

Paper – II (Maths)

Maximum Marks : 150		Time: 2:30 pm to 5:00 pm
Name:		
<u> </u>	(Signature of the Candidate)	
Roll No. (In Figures)		
Roll No. (In Words)		

: INSTRUCTIONS:

- 1. All questions in the Test are multiple choice questions.
- 2. Each question carries one mark, with four alternatives out of which one answer is correct.
- 3. There will be no negative marking.
- 4. Use only BLUE/BLACK Ball Point Pen to darken the appropriate oval.
- 5. Mark your response only at the appropriate space against the number corresponding to the question while answering on the OMR Response Sheet.
- 6. Marking more than one response shall be treated as wrong response.
- 7. Mark your response by completely derkening the relevant oval. The Mark should be dark and the oval should be completely filled.
- 8. Use of calculator, Mobile is strictly prohibited and use of these shall lead to disqualification.
- 9. The candidate MUST remove the last Carbon copy (Candidate's copy) of OMR after completion of Test.
- 10. The question paper will be both in English & Punjabi. In case of any doubt, English version will be taken as final.

1.	ıne	number of lin	es drawn	through 6	points l	lying on a c	ircle is		•
	(a)	12	(b)	15	(c)	24	(d)	30	
	ਇੱਕ	ਘੇਰੇ ਉਪਰ ਬਣੇ (6 ਬਿੰਦੂਆਂ ਰ	<mark>ਾਹੀਂ</mark> ਕਿੰਨੀਅ	ਾ ਰੇਖਾਵਾਂ	ਖਿੱਚੀਆਂ ਗਈ	ੀਆਂ ਹਨ ?		
	(a)	12	(b)	15	(c)	24	(d)	30	
2.	Hov	v many 10 dig	it number	çan be wr	ritten by	using the d	ligit 1 and 2	?	
	(a)	210	(b)	10 ²	(c)	10	(d)	20	
	ਅੰਕ	1 ਅਤੇ 2 ਦਾ ਇਸ	ਜਤੇਮਾਲ ਕਰ	ਦਿਆਂ ਹੋਇਅ	ਮਾਂ ਕਿੰਨੇ 🛚	10 ਅੱਖਰੇ ਨੰਬ	ਰ ਬਣਾਏ ਜਾ ਸ	ਕਦੇ ਹਨ	
• .	(a)	210	(b)	10 ²	(c)	10	(d)	20	
3.	The	number of wa	ys in whi	ch n distin	ct objec	cts can be pu	ut into three	different boxe	s is
	(a)	3n	(b)	3 ⁿ	(c)		· ,	3^n-1	
٠	n ₹F	ਜਤੂਆਂ ਨੂੰ ਤਿੰਨ ਵੱਥ	ਖ– ਵੱਖ ਡੱ	ਬੇਆਂ ਵਿਚ ਰਿ	ਕੁੰਨੇ ਤਰੀ	ਕਿਆਂ ਨਾਲ ਪਾ	ਇਆ ਜਾ ਸਕਚ	ਾਹੈ ?	
	(a)	3n	(b)	3 ⁿ	(c)	n^3	(d)	3^n-1	
4.	'The					is unique	anart from t	na order of th	
	facto	e factoring of ors' is	any mieg	ger n into	pranies	is unique a	apart Holli t	ie order of th	e prime
	facto (a)	e factoring of ors' is Prime number		•	(b)			of arithmetic	
	(a) (c)	Prime number Fundamental	er theoren	n of algebra	(b) a (d)	Fundamer Chinese re	ntal Theorem	of arithmetic	
	(a) (c)	ors' is Prime numbe	er theoren	n of algebra	(b) a (d)	Fundamer Chinese re	ntal Theorem	of arithmetic	
	(a) (c)	Prime number Fundamental	er theoren l theorem ਰਤੀਬ ਨੂੰ ਛੇ	n of algebra	(b) a (d)	Fundamer Chinese ro ਨ n ਨੂੰ ਅਭਾਜ	ntal Theorem	of arithmetic	
	facto (a) (c) ਅਭਾਜ	Prime numbe Fundamental ਜ ਗੁਣਨਖੰਡ ਦੀ ਤ	er theoren l theorem ਰਤੀਬ ਨੂੰ ਛੇ ਸੇਧਾਂਤ	n of algebra ੱਡ ਕੇ ਕਿਸੇ ਪ੍ਰ	(b) a (d) ਪੂਰਨ ਅੰਕ	Fundamer Chinese ro ਨ n ਨੂੰ ਅਭਾਜ ਗਣਿਤ ਦਾ ਮੌ	ntal Theoren emainder the ਸੰਖਿਆਵਾਂ ਵੰਡ	ı of arithmetic orem ਣਾ ਵਿਲੱਖਣ ਹੈ	
5.	(a) (c) (b) (a) (c)	Prime numbe Fundamental ਗੁਣਨਖੰਡ ਦੀ ਤ Prime ਨੰਬਰ ਹਿ	er theoren l theorem ਰਤੀਬ ਨੂੰ ਛੇ ਸੇਧਾਂਤ ਲਿਕ ਸਿਧਾਂਤ	n of algebra ੱਡ ਕੇ ਕਿਸੇ ਪ੍ਰ ਤ	(b) 1 (d) ਪੂਰਨ ਅੰਕ (b) (d)	Fundamer Chinese ro ਨ n ਨੂੰ ਅਭਾਜ ਗਣਿਤ ਦਾ ਮੌ	ntal Theorem emainder the ਸੰਖਿਆਵਾਂ ਵੰਡ ਮਿਲਕ ਸਿਧਾਂਤ	ı of arithmetic orem ਣਾ ਵਿਲੱਖਣ ਹੈ	
	(a) (c) (b) (a) (c)	Prime numbo Fundamental ਜ ਗੁਣਨਖੰਡ ਦੀ ਤ Prime ਨੰਬਰ ਹਿ ਅਲਜਬਰੇ ਦਾ ਮੌ	er theoren l theorem ਰਤੀਬ ਨੂੰ ਛੇ ਸੇਧਾਂਤ ਲਿਕ ਸਿਧਾਂਤ	n of algebra ੱਡ ਕੇ ਕਿਸੇ ਪ੍ਰ ਤ	(b) 1 (d) ਪੂਰਨ ਅੰਕ (b) (d)	Fundamer Chinese re n ਨੂੰ ਅਭਾਜ ਗਣਿਤ ਦਾ ਮੌ ਚੀਨੀ ਦੀ R	ntal Theorem emainder the ਸੰਖਿਆਵਾਂ ਵੰਡ ਮਿਲਕ ਸਿਧਾਂਤ	ı of arithmetic orem ਣਾ ਵਿਲੱਖਣ ਹੈ	
	(a) (c) (b) (a) (c) The (a)	Prime numbo Fundamental ਜ ਗੁਣਨਖੰਡ ਦੀ ਤ Prime ਨੰਬਰ ਨਿ ਅਲਜਬਰੇ ਦਾ ਮੋ number of prin	er theorem l theorem ਰਤੀਬ ਨੂੰ ਛੇ ਸੇਧਾਂਤ ਲਿਕ ਸਿਧਾਂਤ mitive roc (b)	n of algebra ੱਡ ਕੇ ਕਿਸੇ ਪ੍ਰ ਤ ots of 13 ar	(b) 1 (d) ਪੂਚਨ ਅੰਕ (b) (d)	Fundamer Chinese re n ਨੂੰ ਅਭਾਜ ਗਣਿਤ ਦਾ ਮੌ ਚੀਨੀ ਦੀ R	ntal Theorem emainder the ਸੰਖਿਆਵਾਂ ਵੰਡ ਮੈਲਿਕ ਸਿਧਾਂਤ emainder ਸਿ	ı of arithmetic orem ਣਾ ਵਿਲੱਖਣ ਹੈ	
	(a) (c) (b) (a) (c) The (a)	Prime number Fundamental ਜ ਗੁਣਨਖੰਡ ਦੀ ਤ Prime ਨੰਬਰ ਨਿ ਅਲਜਬਰੇ ਦਾ ਮੋ number of prin	er theorem l theorem ਰਤੀਬ ਨੂੰ ਛੇ ਸੇਧਾਂਤ ਲਿਕ ਸਿਧਾਂਤ mitive roc (b)	n of algebra ੱਡ ਕੇ ਕਿਸੇ ਪ੍ਰ ਤ ots of 13 ar	(b) 1 (d) ਪੂਚਨ ਅੰਕ (b) (d)	Fundamer Chinese re n ਨੂੰ ਅਭਾਜ ਗਣਿਤ ਦਾ ਮੌ ਚੀਨੀ ਦੀ R	ntal Theorem emainder the ਸੰਖਿਆਵਾਂ ਵੰਡ ਮੈਲਿਕ ਸਿਧਾਂਤ emainder ਸਿ	ı of arithmetic orem ਣਾ ਵਿਲੱਖਣ ਹੈ	
	(a) (c) かまい (a) (c) The (a) 13 を	Prime number Fundamental ਜ ਗੁਣਨਖੰਡ ਦੀ ਤ Prime ਨੰਬਰ ਨਿ ਅਲਜਬਰੇ ਦਾ ਮੋ number of prin	er theorem l theorem ਰਤੀਬ ਨੂੰ ਛੇ ਸੇਧਾਂਤ ਲਿਕ ਸਿਧਾਂਤ mitive roc (b) ਗਿਣਤੀ ਹੈ: (b)	n of algebra ੱਡ ਕੇ ਕਿਸੇ ਪ੍ਰ ests of 13 ar 2	(b) 1 (d) ਪੂਰਨ ਅੰਕ (b) (d) re (c)	Fundamer Chinese re n ਨੂੰ ਅਭਾਜ ਗਣਿਤ ਦਾ ਮੌ ਚੀਨੀ ਦੀ R 3	ntal Theorem emainder the ਸੰਖਿਆਵਾਂ ਵੰਡ ਮੌਲਿਕ ਸਿਧਾਂਤ emainder ਸਿ (d)	ı of arithmetic orem ਣਾ ਵਿਲੱਖਣ ਹੈ	
5.	(a) (c) かまい (a) (c) The (a) 13 を	Prime number Fundamental ਜ ਗੁਣਨਖੰਡ ਦੀ ਤ Prime ਨੰਬਰ ਨਿ Prime ਨੰਬਰ ਨਿ ਅਲਜਬਰੇ ਦਾ ਮੌ number of prime 1 ਮੁੱਢਲੇ ਮੂਲਾਂ ਦੀ	er theorem l theorem ਰਤੀਬ ਨੂੰ ਛੇ ਸੇਧਾਂਤ ਲਿਕ ਸਿਧਾਂਤ mitive roc (b) ਗਿਣਤੀ ਹੈ: (b)	n of algebra ੱਡ ਕੇ ਕਿਸੇ ਪ੍ਰ ests of 13 ar 2	(b) 1 (d) ਪੂਰਨ ਅੰਕ (b) (d) re (c) (c)	Fundamer Chinese re n ਨੂੰ ਅਭਾਜ ਗਣਿਤ ਦਾ ਮੌ ਚੀਨੀ ਦੀ R 3 (mod 35) ar	ntal Theorem emainder the ਸੰਖਿਆਵਾਂ ਵੰਡ ਮੌਲਿਕ ਸਿਧਾਂਤ emainder ਸਿ (d)	ı of arithmetic orem ਣਾ ਵਿਲੱਖਣ ਹੈ	
5.	(a) (c) Merrical (a) (c) The (a) (a) The (a) (a)	Prime number Fundamental ਜ ਗੁਣਨਖੰਡ ਦੀ ਤ Prime ਨੰਬਰ ਹਿ Prime ਨੰਬਰ ਨਿ ਅਲਜਬਰੇ ਦਾ ਮੌ number of prin 1 ਮੁੱਢਲੇ ਮੂਲਾਂ ਦੀ 1	er theorem t theorem ਰਤੀਬ ਨੂੰ ਛੇ ਸੇਧਾਂਤ ਲਿਕ ਸਿਧਾਂਤ mitive roc (b) ਗਿਣਤੀ ਹੈ: (b)	n of algebra ਫ਼ਿਡ ਕੇ ਕਿਸੇ ਪ੍ਰ ਤ ots of 13 ar 2 2 ions of 15	(b) 1 (d) 1 (d) 1 (b) (d) 1 (c) 1 (c)	Fundamer Chinese re n ਨੂੰ ਅਭਾਜ ਗਣਿਤ ਦਾ ਮੈਂ ਚੀਨੀ ਦੀ Re 3 3 (mod 35) ar 2	ntal Theorem emainder the ਸੰਖਿਆਵਾਂ ਵੰਡ ਮੌਲਿਕ ਸਿਧਾਂਤ emainder ਸਿ (d) (d)	ı of arithmetic orem ਣਾ ਵਿਲੱਖਣ ਹੈ	
5.	(a) (c) Merrical (a) (c) The (a) (a) The (a) (a)	Prime number of inter the number of interest of the number of the number of the number of interest of the number of the num	er theorem t theorem ਰਤੀਬ ਨੂੰ ਛੇ ਸੇਧਾਂਤ ਲਿਕ ਸਿਧਾਂਤ mitive roc (b) ਗਿਣਤੀ ਹੈ: (b)	n of algebra ਫ਼ਿਡ ਕੇ ਕਿਸੇ ਪ੍ਰ ਤ ots of 13 ar 2 2 ions of 15	(b) 1 (d) 1 (d) 1 (b) (d) 1 (c) 1 (c)	Fundamer Chinese re n ਨੂੰ ਅਭਾਜ ਗਣਿਤ ਦਾ ਮੌ ਚੀਨੀ ਦੀ R 3 3 (mod 35) ar 2	ntal Theorem emainder the ਸੰਖਿਆਵਾਂ ਵੰਡ ਮੌਲਿਕ ਸਿਧਾਂਤ emainder ਸਿ (d) (d)	ı of arithmetic orem ਣਾ ਵਿਲੱਖਣ ਹੈ	

7.	Which one of the following is incorrect? (a) Every subgroup of an abelian group is abelian
	(b) Every cyclic group is abelian
	(c) Every subgroup of a non-abelian group is non-abelian(d) If every element of a group is its own inverse then the group is abelian
	(d) If every element of a group is its own inverse then the group is abelian ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੌਂ ਕਿਹੜਾ ਕਥਨ ਗਲਤ ਹੈ ?
	(a) ਇੱਕ Abelian ਸਮੂਹ ਦਾ ਉਪ ਸਮੂਹ Abelian ਹੈ
	(b) ਹਰੇਕ ਗੋਲਾਕਾਰ ਸਮੂਹ Abelian ਹੈ
	(c) ਹਰ ਗ਼ੈਰ-Abelian ਸਮੂਹ ਦਾ ਸਮੂਹ ਵੀ ਗ਼ੈਰ-Abelian ਹੈ
	(d) ਜੇਕਰ ਇੱਕ ਸਮੂਹ ਦਾ ਹਰੇਕ ਅੱਖਰ ਇਸਦਾ ਆਪਣਾ ਉਲਟ ਹੈ ਤਾਂ ਇਹ ਸਮੂਹ Abelian ਹੈ
8.	Which one of the following is true?
	(a) A permutation is a one-to-one function
	(b) The symmetric group S ₃ is cyclic
	(c) A ₅ has 120 elements
	(d) Every factor group of non-abelian group is non-abelian ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਦਰੁਸਤ ਹੈ ?
	(a) ਕ੍ਰਮ ਪਰਿਵਰਤਨ ਇੱਕ−ਤੋਂ-ਇੱਕ ਫਲਨ ਹੈ (b) ਤਰਤੀਬਵਾਰ ਸਮੂਹ S₃ ਚੱਕਰੀ ਹੈ
	(c) A_5 ਵਿਚ 120 ਤੱਤ ਹਨ (d) ਗ਼ੈਰ-Abelian ਸਮੂਹ ਦੀ ਹਰ ਵੰਡ ਗ਼ੈਰ-Abelian ਹੈ
9.	The set of integers with operation '*' defined by $a * b = a + b + 1$ is given to be a group.
	The identity of this group is
	(a) 0 (b) 1 (c) -1 (d) None of these $a*b=a+b+1$ ਦੁਆਰਾ ਨਿਰਧਾਰਤ ਕੀਤੇ integers ਦਾ ਸੈਂਟ ਜਿੰਨਾਂ ਦੀ ਕਿਰਿਆ '*' ਹੈ, ਇੱਕ ਸਮੂਹ ਹੈ
	ਇਸ ਸਮੂਹ ਦੀ ਪਰਿਚਾਣ ਹੈ : (a) 0 (b) 1 (c) –1 (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
	(a) 0 (b) 1 (c) -1 (d) ਇਹਨਾਂ ਵਿੱਚ ਕੋਈ ਨਹੀਂ
10.	A Sylow 3-subgroup of a group of order 12 has order
	(a) 4 (b) 2 (c) 12 (d) 3
	ਇੱਕ ਸਮੂਹ ਜਿਸਦਾ ਕ੍ਰਮ 12 ਹੈ ਦੇ ਇੱਕ Sylow 3-ਉਪ ਸਮੂਹ ਦੀ ਤਰਤੀਬ ਹੋਵੇਗੀ ?
	(a) 4 (b) 2 (c) 12 (d) 3
11.	Which one of the following is false?
	(a) Any two groups of order 3 are isomorphic
	(b) Any two finite groups with the same number of elements are isomorphic
	(c) Every isomorphism is a homomorphism
	(d) An additive group can be isomorphic to a multiplicative group ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੌਂ ਕਿਹੜਾ ਗਲਤ ਹੈ ?
	(a) ਤਰਤੀਬ 3 ਦੇ ਕੋਈ ਵੀ 2 ਜੁੱਟ isomorphism ਹਨ
	(b) ਸਮਾਨ ਗਿਣਤੀ ਤੱਤਾ ਵਾਲੇ ਕੋਈ ਵੀ ਦੋ ਸੀਮਤ ਸਮੂਹ isomorphism ਹਨ
	(c) ਹਰ isomorphism, homomorphism ਹੈ
	(d) ਇੱਕ ਯੋਜਕ ਸਮੂਹ ਇਕ ਗੁਣਨਸ਼ੀਲ ਸਮੂਹ ਪ੍ਰਤੀ isomorphic ਹੋ ਸਕਦਾ ਹੈ
C .	3 Paper-II (Maths
	_ ·

	(a)	Prime	(b)	Maximal	(c)	Principal	(d)	None of these					
	ਇੱਕ	Integers ਦे ਘੇ	ਰੇ ਵਿਚ ਹਰ	ਆਦਰਸ਼ ਹੈ :									
	(a)	ਉੱਤਮ	(b)	ਅਧਿਕਤਮ	(c)	ਮੁਖ	(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ	-				
13.	W/bi	ch one of the	following	ic tmp 9									
13.	(a)	Every finite			ield								
	(b)	The charact	_			o or one.							
	(c)	A principal		•		•							
	(d) Every unique factorization domain is a Euclidean domain.												
-	ਹੇਠ ਿ	ਲਿਖਿਆਂ ਵਿਚੋਂ ਰਿ	ਕਹੜਾ ਸਹੀ ਹੈ	1									
	(a)	ਹਰ ਸੀਮਤ Integral ਮੁੱਲ ਵਿੱਕ ਖੇਤਰ ਹੈ											
	(b)	ਇੱਕ ਘੇਰੇ ਦਾ	ਲੱਛਣ ਜਾਂ ਸਿ	ਫ਼ਰ ਹੈ ਜਾਂ ਇੱਕ	₹								
	(c)	04 4 4 04 4 04											
	(d)												
14.	W/h;	ch one of the	follouring	is false ?									
14.		Which one of the following is false? (a) The Galois group of a finite extension of a finite field is abelian.											
	(b)	_	•										
	(c)												
	(d)	• •											
	• •	ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਕਿਹੜਾ ਗਲਤ ਹੈ ?											
	(a)	ਇੱਕ ਸੀਮਤ ਖੇ	ਤਰ ਦੇ ਸੀਮਤ	ਤ ਵਾਧੇ ਦਾ Ga	lois F	ਮੂਹ ਇੱਕ Abelia	ın ਹੈ		٠				
	(b)	ਪਰਿਮੇਯ ਸੰਖਿਅ	,			•							
	(c)												
	(d)												
15.		set Q of ratio	nal numbe	rs with usua	•								
	(a)	Compact			(b)	Complete	. •	•					
	(c)	Connected	والمراجعة والمراجعة	6 m m - r - r	(d) . ≱ ≥	Totally disco	nnectea						
		topology ਨਾਲ	HIGHG H	ופיאיפי צי ע	-	•							
	(a)	ਸੰਖੇਪ 	•		(b)		0.0						
Dome	(c)	ਸੰਬੰਧਿਤ fethe			(d)	ਪੂਰਨ ਰੂਪ ਵਿੱਚ	ਅਸਬਧਤ	_					
rape:	r-II (M	LA LIIS <i>)</i>			4			C					

In the ring of integers, every ideal is

12.

Every T₃ - space is **16.**

> (a) regular

- (b) normal
- completely regular (c)
- completely normal (d)

ਹਰ T₃ – ਵਿਸਥਾਰ ਹੈ

ਨਿਰੰਤਰ (a)

- (b) ਆਮ
- ਪਰਨ ਰਪ ਵਿੱਚ ਨਿਰੰਤਰ (c)
- (d) ਪੂਰਨ ਰੂਪ ਵਿੱਚ ਆਮ

The order and degree of the differential equation $\frac{d^2y}{dx^2} + \sqrt{x + \left(\frac{dy}{dx}\right)^3} = 0$ is

- (a) (2, 2)
- (b) (3, 2)
- (c) (2,3)
- (d) (1,3)

ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ $\frac{d^2y}{dx^2} + \sqrt{x + \left(\frac{dy}{dx}\right)^3} = 0$ ਦਾ ਕ੍ਰਮ ਅਤੇ ਡਿਗਰੀ ਹੈ:

- (a) (2, 2)
- (b) (3, 2) (c) (2, 3)
- (d) (1, 3)

The integrating factor of the differential equation $(1 + x^2) \frac{dy}{dx} + y = \tan^{-1} x$ is 18.

- (b) $e^{\tan^{-1}x}$ (c) $e^{-\tan x}$
- (d)

ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ $(1+x^2)\frac{dy}{dx}+y=\tan^{-1}x$ ਨੂੰ ਜੋੜਨ ਵਾਲਾ ਤੱਤ ਹੈ

- (a)
- (b) $e^{\tan^{-1}x}$ (c) $e^{-\tan x}$
- (d) tan x

P.I. of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = e^{-x}$ is

- (b) $-e^{-x}$ (c) $3e^{-x}$
- (d) $\frac{1}{3}e^{-x}$

ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = e^{-x}$ ਦਾ P.I. ਹੈ

- (a) e^{-x}
- (b) $-e^{-x}$ (c) $3e^{-x}$
- (d) $\frac{1}{2}e^{-x}$

The differential equation whose auxiliary equation has the roots 0, -1, -1 is 20.

 $(a) \quad \frac{d^3y}{dx^3} + \frac{dy}{dx} = 0$

- (b) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = 0$
- (c) $\frac{d^3y}{dx^3} + 2 \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$
- (d) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

ਉਹ ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ ਜਿਸਦੀ ਦੇ ਸਮੀਕਰਨ ਦੇ 0, −1, −1 ਹਨ,

(a) $\frac{d^3y}{dx^3} + \frac{dy}{dx} = 0$

- (b) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = 0$
- (c) $\frac{d^3y}{dx^3} + 2 \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$
- (d) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

The complete solution of the partial differential equation $\sqrt{p} + \sqrt{q} = 1$ is 21.

(a)
$$z = ax + y$$

(b)
$$z = ay + b$$

(c)
$$z = ax + (1 - \sqrt{a})^2 y + c$$

$$(d) \quad z = x + y$$

ਅੰਸ਼ਕ ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ $\sqrt{p}+\sqrt{q}=1$ ਦਾ ਪੂਰਨ ਹੱਲ ਹੈ :

(a)
$$z = ax + y$$

(b)
$$z = ay + b$$

(c)
$$z = ax + (1 - \sqrt{a})^2 y + c$$

(d)
$$z = x + y$$

The partial differential equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ represents 22.

One-dimensional heat flow equation (b) Wave equation

(c) Two-dimensional heat flow equation (d) Laplace equation

ਅੰਸ਼ਕ ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ ਦੀ ਪ੍ਰਸਤੁਤ ਕਰਦੀ ਹੈ :

ਇੱਕ ਆਯਾਮੀ ਤਾਪ ਸੰਚਾਰੀ ਸੰਬੰਧ (a)

(b) ਤਰੰਗ ਸਮੀਕਰਨ

ਦੋ-ਆਯਾਮੀ ਤਾਪ ਸੰਚਾਰੀ ਸੰਬੰਧ

(d) Laplace ਸਮੀਕਰਨ

23. The order of convergence of Newton-Raphson method is

(a)

(b)

(c) 2 (d)

Newton-Raphson ਮਾਡਲ ਦੇ ਬਦਲਾਵ ਤਰਤੀਬ ਹੈ :

(a) 0 (b) 1

(c) 2 (d) 3

 $\Delta^2 e^x$ is equal to 24.

(a) $(e-1)e^x$

(b) $(e-1)^2 e^x$ (c) $(e-1)e^{-x}$

(d) $(e-1)^2e^{-x}$

 $\Delta^2 e^x$ ਬਰਾਬਰ ਹੈ

(a) $(e-1)e^x$

(b) $(e-1)^2 e^x$ (c) $(e-1)e^{-x}$ (d) $(e-1)^2 e^{-x}$

A necessary condition for $I = \int_{x_1}^{x_2} (x, y, y') dx$ to be an extremum is 25.

(a) $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$

(b) $\frac{\partial f}{\partial x} - \frac{d}{dx} \left(\frac{\partial f}{\partial x'} \right) = 0$

(c) $\frac{\partial f}{\partial x} - \frac{d}{dy} \left(\frac{\partial f}{\partial y'} \right) = 0$

(d) $\frac{\partial f}{\partial v} - \frac{d}{dv} \left(\frac{\partial f}{\partial v'} \right) = 0$

 $I = \int_{x_1}^{x_2} (x, y, y') dx$ ਦੇ ਅਧਿਕਤਮ ਹੋਣ ਲਈ ਜ਼ਰੂਰੀ ਸ਼ਰਤ ਹੈ

(a) $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$

(b) $\frac{\partial f}{\partial x} - \frac{d}{dx} \left(\frac{\partial f}{\partial x'} \right) = 0$

(c) $\frac{\partial f}{\partial x} - \frac{d}{dy} \left(\frac{\partial f}{\partial y'} \right) = 0$

(d) $\frac{\partial f}{\partial y} - \frac{d}{dy} \left(\frac{\partial f}{\partial y'} \right) = 0$

26.	Geo	desics on a plane	are			•			
	(a)	circles	(b) str	aight lines	(c)	cycloids	(d)	catenar	y
	ਇੱਕ	ਪਲੇਨ ਉਪਰ Geode	sics ਹਨ			•			
	(a)	ਗੋਲੇ	(b) मिं	ਧੀਆਂ ਰੇਖਾਵਾਂ	(c)	ਚੱਕਰਾਕਾਰ	(d)	ਸੰਗਲੀ ਕ	ਾਰ ਵਕਰ
27.		integral equation	y(x) =	= F(x) +	λ ∫ _a	K(x,t) y(t) d	t is calle	ed Vol	terra integra
	(a)	a and b are varia	bles		(b)	a and b are co	nstants		
	(c)	a is a constant w	hile b is	a variable	(d)	either a or b is	s zero		-
		gral ਸਮੀਕਰਨ <i>y(x)</i> ਹੈ ਜੇਕਰ	= F(x)	$(1 + \lambda) \int_a^b$	K(x,t	t) y(t) dt ਨੂੰ V	'olt erra ii	ntegral	ਸਮੀਕਰਨ ਕਿਹ
	(a)	a ਅਤੇ b ਅਸਥਿਰ	ਹਨ		(b)	a ਅਤੇ b ਸਥਿਰ	ਹਨ		
	(c)	а ਸਥਿਰ ਹੈ ਜਦਕਿ	ь ਅਸਥਿਰ	ਹ ਹੈ	(d)	a ਜਾਂ b ਸਿਫਰ ਹੈ)		
28.	Sho	rtest curve joining	two fixe	ed points is			•	•	•
	(a)	a cycloid			(b)	straight line			
	(c)	catenary		<u></u>	(d)	cardiode			
	ਦ ਸੀ	ਥਿਰ ਬਿੰਦੂਆਂ ਨੂੰ ਜੋੜਨ 	ਵਾਲਾ ਛਟ	ਤ ਛਟਾ ਵ	ਕਰ ਹ	•			
	(a)	ਇੱਕ ਚੱਕਰਾਕਾਰ			(b)	ਸਿੱਧੀ ਰੇਖਾ			
	(c)	ਸੰਗਲਾਕਾਰ			(d)	cardiode			
29.	If a start is	particle moves o ing from rest fror	n a smo	ooth curve form of p	joini ath in	ng two fixed p order that the	points A time from	and Bu n Ato B	ınder gravity 3 is minimun
	(a)	straight line		•		cardioide	(d)	circle	
		ı ਇੱਕ ਕਣ ਗੁਰੂਤਾ ਅ ∖ ਤੋਂ ਸ਼ਰੂ ਹੋਣ ਕੇ, ਰ							
	(a)	ਸਿੱਧੀ ਰੇਖਾ	(b)	ਚੱਕ ਰ	(c)	cardioide	. (q)	ਘੇਰਾ	
30.	The	number of degree	es of free	dom of a	rioid f	ody moving fi	reelv in si	nace is	
50.	(a)	2		3	(c)	4°	(d)	6	•
		ੂ ਤ ਵਿੱਚ ਸੁਤੰਤਰ ਘੁੰਮਦ	• -			ਗੇ ਦੀ ਸੰਖਿਆ ਹੈ	7.7		
	(a)	2	(b)	•	(c)	4	(d)	6	*
_	•		:				,		aper-II (Math
C					7				wher-re (mann)

31.	31. The number of generalized co-ordinates required to describe the motion of a rigid body with one of its point fixed is										
	(a)	1 .	(b)	4	(c)	3	(d)	6			
	ਇੱਕ	ਸਥਿਰ ਬਿੰਦੂ ਨਾਲ ਚਲ	ਦੇ ਹੋਏ	ਇੱਕ ਸਖ਼ਤ ਤੱ	ੱਤ ਦੀ ਚ	ਭਾਲ ਨੂੰ ਦੱਸਣ ਵਾਲੇ co	-ordi	nates ਦੀ ਗਿਣਤੀ ਹੈ			
	(a)	1	(b)	4	(c)	3	(d)	6			
32.	The	conjunction of two	state	ments p an	d q is	true if					
	(a)	p is true	(b)	q is true	(c)	both (a) and (b)	(d)	neither (a) nor (b)			
	ਦੋ ਕਾ	ਕਨਾਂ p ਅਤੇ q ਦਾ ਜੋੜ	ਦਰੁਸ਼ਤ	ਤ ਹੈ ਜੇਕਰ			÷	•			
	(a)	<i>p</i> ਸਹੀ ਹੈ	(b)	<i>q</i> ਸਹੀ ਹੈ	(c)	(a) ਅਤੇ (b) ਦੋਵੇਂ	(d)	ਨਾ (a) ਅਤੇ ਨਾ (b)			
33.		e statements p and then $p \Rightarrow q$ is	l' <i>q</i> ar	e defined as	s <i>p</i> : t	he integer n is od	d an	ad q : the integer n^2 is			
	(a)	false			(b)	true					
	(c)	sometime true an	d som	etime false	(d)	none of these					
		ਜੇਕਰ ਕਥਨਾਂ p ਅਤੇ q ਨੂੰ ਪਰਿਭਾਸ਼ਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, p : integer n ਟਾਂਕ ਹੈ ਅਤੇ q : integer n^2 ਟਾਂਕ ਹੈ, ਫਿਰ $p\Rightarrow q$ ਹੈ									
	(a)	ਗਲਤ			(b)	ਸਹੀ		• . •			
	(c)	ਕਦੇ ਗਲਤ ਅਤੇ ਕਦੇ	ਸਹੀ		(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨ	ਨਹੀ ਂ				
34.	Give	on that $(p \lor q) \land ($	~ p V	$\sim q$) is false	e, then	the truth values o	f p ar	nd q are			
•	(a)	both false			(b)	both true		•			
	(c)	either both true o	r both	false	(d)	none of these		* * * * * * * * * * * * * * * * * * * *			
	(p v	$(q) \wedge (\sim p \vee \sim q)$	ਗਲਤ	ਹੈ, ਤਾਂ p ਅਤੇ	<i>q</i> ਦੇ 1	ਸਹੀ ਮੁੱਲ ਹਨ					
	(a)	ਦੋਵੇਂ ਗਲਤ			(b)	ਦੋਵੇਂ ਸਹੀ					
	(c)	ਜਾਂ ਦੋਵੇਂ ਗਲਤ ਜਾਂ ਦੋ	ਵੇਂ ਸਹੀ	t	(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨ	ਹੀ				
35.	The	proposition define	d by μ	o∧(~ p∨q	7) is			· .			
	(a)	a tautology			(b)	a contradiction		V.			
	(c)	logically equival	ent to	p∧q	(d)	none of these		y ·			
	p ^ ($(\sim p \lor q)$ ਦੁਆਰਾ ਪ	ਰਿਭਾਸ਼ਿ	ਹ ਼ਤ ਪ੍ਰਸਤਾਵ ਹੈ							
	(a)	ਇੱਕ tautology			(b)	ਇੱਕ ਵਿਰੋਧਾਭਾਸ					
	(c)	р∧ q ਦੇ ਤਰਕਸੰਗਤ	ਬਰਾਬ	ਰ	(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨ	ਹੀ				
Paper	-II (M	aths)			8			c			

36.	The	mean and variance	æ of fi	rst n natura	ıl numb	ers are respective	ely			
		$\frac{n+1}{2} \text{ and } \frac{n^2-1}{12}$		· ·	-	-	(d)	$\frac{n^2+1}{12} \text{ and } \frac{n-1}{2}$		
	ਪਹਿ ਲ	ੀਆਂ n ਕੁਦਰਤੀ ਸੰਪਿ	∃ਆਵਾਂ ਰ	ਈ ਔਸਤ ਅਤੇ	ਭਿੰਨਤਾ	ਹੈ				
	(a)	$\frac{n+1}{2}$ and $\frac{n^2-1}{12}$	(b)	$\frac{n^2-1}{12}$ and	$\frac{n+1}{2}$ (c) $\frac{n-1}{2}$ and $\frac{n^2+1}{12}$	(d)	$\frac{n^2+1}{12} \text{ and } \frac{n-1}{2}$		
37.	The	sum of absolute	deviati	on about m	edian i	5				
	(a)	greatest	(b)	least	(c)	zero	(d)	none of these		
	ਮੱਧਿਆ	ਮਕਾ ਤੋਂ ਲਏ ਪੂਰਨ ਕਿ	₹ਚਲਨਾ	ਦਾ ਜੋੜ ਹੈ				•		
	(a)	ਅਧਿਕਤਮ	(b)	ਨਿਊਨਤਮ	(c)	ਸਿਫਰ	(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀ		
38.	If 10	0 is the mean corvations then the	of a se mean	et of 7 obsofthese two	servatio o sets,	ons and 5 is the taking together, i	: mear s	of another set of 3		
	(a)	15	(b)	10	(c)	8.5	(d)	7.5		
	ਜੇਕਰ 7 ਕਥਨਾਂ ਦੇ ਇੱਕ ਸੈੱਟ ਦੀ ਔਸਤ 10 ਹੈ ਅਤੇ 3 ਕਥਨਾਂ ਦੇ ਇੱਕ ਹੋਰ ਸੈੱਟ ਦੀ ਔਸਤ 5 ਹੈ ਤਾਂ ਦੋਹਾਂ ਸੈੱਟ ਦੀ ਇਕੱਠਿਆਂ ਔਸਤ ਹੋਵੇਗੀ									
	(a)	15	(b)	10	(c)	8.5	(d)	7.5		
39.		the events S and T and $P(S)$ is	' have (equal proba	bilities	and are indepen	dent w	$vith P(S \cap T) = p > 0$		
	(a)	\sqrt{p}	(b)	p^2	(c)	p	(d)	none of these		
	ਜੇਕਰ P(S	T ਈਵੈਂਟ S ਅਤੇ T						0 ਨਾਲ ਸੁਤੰਤਰ ਹਨ, ਫਿਰ		
٠	(a)	\sqrt{p}	(b)	p ²	(c)	p	(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ		
40.	In c	ase of tossing an	ordina	ry die, the	set of e	vents {1,2,3,4,5,6	5} is			
	(a)	exhaustive			(b)	mutually exclu	sive			
	(c)	both (a) and (b)	:	(d)	neither (a) nor	(b)	•		
*	ਇੱਕ	ਸਧਾਰਨ ਪਾਸੇ ਨੂੰ ਸੁੱਕ	टह हेले.	, ਈਵੈਂਟ {1	1,2,3,4,	5,6} ਦਾ ਸੈਂਟ ਹੈ				
	(a)	ਵਿਸਤ੍ਰਿਤ			(b)	ਪਰਸਪਰ ਨਿਵੇਕਲੇ				
	(c)	(a) ਅਤੇ (b) ਦੋਵੇਂ	i		(d)	ਨਾ (a) ਅਤੇ ਨਾ (b)	· · · · · · · · · · · · · · · · · · ·		
					•			Poner-II (Math		

41.	sing	gle coin is flipp Ills tail die B is	ed once.	If it fal	ls head the	game s	tarts with t	he th	nd four white faces. A rowing of die A and i ce at any throw of an
	(a)	$\frac{1}{2}$	(b)	1 2	(c)	1		(d)	none of these
	ਪਾਸਾ ਨੂੰ ਇ ਜੇਕਰ	ਾ A ਦੇ ਚਾਰ ਲਾਲ ਦੱਕ ਵਾਰ ਸੁੱਟਿਆ	ਨ ਅਤੇ ਦੋ ਚਿ ਜਾਂਦਾ ਹੈ। ਉਂਦਾ ਹੈ ਤਾਂ	ਤੌਂਟੇ ਪੱਖ ਜੇਕਰ 1	ਹਨ ਜਦਕਿ ਪ ਏਸਤੇ ਹੈੱਡ ਅ	ਾਸੇ B ਦੇ ਆਉਂਦਾ ਹੈ	ਦੋ ਲਾਲ ਅਤੇ ਤਾਂ A ਪਾਸ	ੇ ਚਾਰ ਾ ਸੱਟ	ਚਿੱਟੇ ਪੱਖ ਹਨ. ਇੱਕ ਸਿੱਰ ਣ ਨਾਲ ਖੇਡ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ ਾਸੇ ਨੂੰ ਸੁੱਟਣ 'ਤੇ ਲਾਲ ਪੱਖ
	(a)	1 2	(b)	1 3	(c)	1/4		(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
42.	If P	$(A \cup B) = \frac{5}{6}, I$	$P(A \cap B)$	$=\frac{1}{3}$ and	$d P(\overline{A}) =$	$\frac{1}{2}$ then ϵ	events A an	d <i>B</i> a	re
	(a)	independent			(b)	mutua	lly exclusiv	ve	
	(c)	exhaustive			(d)	none o	f these		
	ਜੇਕਰ	$P(A \cup B) =$	$\frac{5}{6}$, $P(A \cap A)$	$B)=\frac{1}{3}$	and $P(\overline{A})$	$=\frac{1}{2}$, ਫਿਰ	ਰ ਈਵੈਂਟ <i>A</i> ਮ	ਅਤੇ <i>B</i>	ਹਨ
		ਸੁਤੰਤਰ	_			-	ਜ ਨਿਵੇਕਲ <u>ੇ</u>		
	(c)	ਵਿਸਤ੍ਰਿਤ			(d)	ਇਹਨਾਂ	ਵਿੱਚੋਂ ਕੋਈ ਨ	ਹੀਂ	
43.	If (A	$A \cup B) = \frac{5}{6}, P$	$(A \cap B) =$	$=\frac{1}{3}$, and	$d P(\bar{A}) =$	$\frac{1}{2}$ then I	P(A/B) is	equa	l to
		1.00			(c)	_	_	(d)	0.50
	ਜੇਕਰ	$(A \cup B) = \frac{5}{6},$	$P(A \cap B)$	$=\frac{1}{2},$	and $P(\bar{A})$	= ¹ / ₃ , ਫਿਰ	P(A/p)	ਬਰਾਬ	ਰ ਹੈ
	(a)	_		•	(c)	-	. –	(d)	•
44.	Let 2	X and Y be two	o random	variabl	es with the	followi	ng joint p	df:	
٠	f(x,	$y)=\begin{cases}c(2x+0)\\0\end{cases}$	(y); 0 < y	c < 1,0	0 < y < 2 erwise				
	Ther	n the value of c	constant c	is					
	(a)	$\frac{1}{3}$	(b)	1 4	(c)	1 5		(d)	none of these
	ਮੰਨ ਨ	ਲਉ <i>X</i> ਅਤੇ <i>Y</i> ਹੋਰ	ਤਾਂ ਦਿੱਤੀ jo	int pdf	`ਵਾਲੇ ਦੋ ਰੈ ਫ	ਮ ਵੇਰੀਏ	ਬਲ ਹਨ		
-		$y)=egin{cases} c(2x+0), & 0 \end{cases}$ ੀ ਅੰਕ c ਦਾ ਮੁੱਲ		c < 1, (othe) < <i>y</i> < 2 crwise				
				1		4			•
•	(a)	- 3	(b)	4	(c)	5		(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ

If the joint pdf of random variables X and Y is given by 45.

$$P(X = x, Y = y) = \begin{cases} \frac{x + y}{30}; & x = 0,1,2,3 \text{ and } y = 0,1,2 \\ 0; & \text{otherwise} \end{cases}$$
then $P(X + Y = 4)$ is
$$(a) \quad \frac{2}{5} \qquad (b) \quad \frac{1}{6} \qquad (c) \quad \frac{4}{15}$$

(a)
$$\frac{2}{5}$$

(b)
$$\frac{1}{6}$$

(c)
$$\frac{4}{15}$$

(d) none of these

ਰੈਂਡਮ ਚਰਾਂ X ਅਤੇ Y ਦੀ joint pdf ਹੈ

$$P(X = x, Y = y) = \begin{cases} \frac{x + y}{30}; & x = 0,1,2,3 \text{ and } y = 0,1,2 \\ 0; & \text{otherwise} \end{cases}$$

$$\text{fixod } P(X + Y = 4) \quad \vec{0}:$$

$$\text{(a)} \quad \frac{2}{5} \qquad \text{(b)} \quad \frac{1}{6} \qquad \text{(c)} \quad \frac{4}{15}$$

(a)
$$\frac{2}{5}$$

(b)
$$\frac{1}{6}$$

(c)
$$\frac{4}{15}$$

(d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ

The function $\phi(t)$ is a characteristic function of a random variable if 46.

(a)
$$\phi(0) = 1$$

(b)
$$\phi(t) = \phi(-t)$$

(c)
$$\phi(t)$$
 is continuous

ਫਲਨ $\phi(t)$ ਇੱਕ ਬੇਤਰਤੀਬੀ ਚਰ ਦਾ ਵਿਸ਼ੇਸ਼ਕ ਫਲਨ ਹੈ ਜੇਕਰ

(a)
$$\phi(0) = 1$$

(b)
$$\phi(t) = \phi(-t)$$

$$(c)$$
 $\phi(t)$ ਨਿਰੰਤਰ ਹੈ

A sequence of random variables $X_1, X_2, \dots, X_n, \dots$ is said to converge in probability to a constant A if for any $\epsilon > 0$, we have

(a)
$$\lim_{n \to \infty} P(|X_n - A| < \epsilon) = 0$$

(b)
$$\lim_{n\to\infty} P(|X_n - A| < \epsilon) = 1$$

(c)
$$\lim_{n\to\infty} P(X_n - A < \epsilon) = 0$$

(d)
$$\lim_{n\to\infty} P(X_n - A < \epsilon) = 1$$

(a) $\lim_{n\to\infty}P(|X_n-A|<\epsilon)=0$ (b) $\lim_{n\to\infty}P(|X_n-A|<\epsilon)=1$ (c) $\lim_{n\to\infty}P(X_n-A<\epsilon)=0$ (d) $\lim_{n\to\infty}P(X_n-A<\epsilon)=1$ ਬੇਤਰਤੀਬ ਚਰਾਂ ਦੀ ਇੱਕ ਲੜੀ $X_1, X_2, \dots, X_n, \dots$ ਇੱਕ ਸਥਾਈ ਅੰਕ A ਲਈ probability ਵਿੱਚ ਕੇਂਦਰਤ ਹੁੰਦੀ ਕਹੀ ਜਾਵੇਗੀ ਜੇਕਰ ਕਿਸੇ ਵੀ $\epsilon > 0$, ਸਾਡੇ ਕੋਲ ਹੈ:

(a)
$$\lim_{n\to\infty} P(|X_n-A|<\epsilon)=0$$

(b)
$$\lim_{n\to\infty} P(|X_n - A| < \epsilon) = 1$$

(c)
$$\lim_{n\to\infty} P(X_n - A < \epsilon) = 0$$

$$\lim_{n \to \infty} P(|X_n - A| < \epsilon) = 0$$
 (b)
$$\lim_{n \to \infty} P(|X_n - A| < \epsilon) = 1$$

$$\lim_{n \to \infty} P(X_n - A < \epsilon) = 0$$
 (d)
$$\lim_{n \to \infty} P(X_n - A < \epsilon) = 1$$

If X is a random variable with mean μ and variance σ^2 , then for any positive number k, the 48. Chebychev's inequality is given by

(a)
$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

n by
(b)
$$P(|X - \mu| \ge k\sigma) \ge \frac{1}{k^2}$$

(c)
$$P(|X - \mu| \le k\sigma) \le \frac{1}{k^2}$$

ਜੇਕਰ ਔਸਤ μ ਅਤੇ ਭਿੰਨਤਾ σ^2 X ਨਾਲ ਇੱਕ ਬੇਤਰਤੀਬ ਚਰ ਹੈ, ਤਾਂ ਫਿਰ ਕਿਸੇ ਵੀ ਧਨਾਤਮਕ ਅੰਕ k ਲਈ Chebychev's inequality ਦਿੱਤੀ ਗਈ ਹੈ:

(a)
$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

(b)
$$P(|X - \mu| \ge k\sigma) \ge rac{1}{k^2}$$

(d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ

(c)
$$P(|X - \mu| \le k\sigma) \le \frac{1}{k^2}$$

(a) $P[X_{n+1} = i_{n+1}/X_0 = i_0, X_1 = i_1, X_n = i_n] = P[X_{n+1} = i_{n+1} / X_n = i_n]$ (b) $P[X_{n+1} = i_{n+1}/X_0 = i_0, X_1 = i_1, X_n = i_n] = P[X_{n+1} = i_{n+1}]$ (c) $P[X_{n+1} = i_{n+1}/X_0 = i_0, X_1 = i_1, X_n = i_n] = P[X_n = i_n]$ (d) None of these ਇੱਕ ਲੜੀ {X_n} Markov Chain ਕਹਾਉਂਦੀ ਹੈ ਜੇਕਰ ਸਾਰੇ $i_0, i_1, i_2, i_{n+1} \in I$ & $\forall n$ (a) $P[X_{n+1} = i_{n+1}/X_0 = i_0, X_1 = i_1, X_n = i_n] = P[X_{n+1} = i_{n+1} / X_n = i_n]$ (b) $P[X_{n+1} = i_{n+1}/X_0 = i_0, X_1 = i_1, X_n = i_n] = P[X_{n+1} = i_{n+1} / X_n = i_n]$ (c) $P[X_{n+1} = i_{n+1}/X_0 = i_0, X_1 = i_1, X_n = i_n] = P[X_n = i_n]$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ 50. The coefficient of dispersion of Poisson distribution with mean 4 is (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 4 (d) 2 ਐਜਤ 4 ਨਾਲ Poisson distribution ਦਾ ਵਿਸਥਾਪਣ ਦਾ ਗੁਣਾਕ ਹੈ: (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 4 (d) 2 51. The mean and variance of Chi-square distribution with n degrees of freezesectively (a) $2n$ and n (b) n^2 and \sqrt{n} (c) \sqrt{n} and n^2 (d) n and $2n$ n degrees of freedom ਨਾਲ Chi-square ਵੰਡ ਦੇ ਐਸਤ ਅਤੇ ਵਿਚਲਣ ਹਨ ਕ੍ਰਮਵਾਰ (a) $2n$ ਅਤੇ n (b) n^2 ਅਤੇ \sqrt{n} (c) \sqrt{n} ਅਤੇ n^2 (d) n ਅਤੇ $2n$ 52. For a normal distribution, the area to the right hand side of the point x_1 is 0.6 hand side of the point x_2 is 0.7, then we have (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) none of the ਇੱਕ ਸਪਾਰਨ ਵੰਡ ਲਈ ਤਿੰਦੂ x_1 ਦੇ ਸੰਜੇ ਪਾਸੇ ਦਾ ਖੇਤਰ 0.6 ਹੈ ਅਤੇ ਤਿੰਦੂ x_2 ਖੇਡੇ ਪਾਸੇ ਵੱਲ ਖੇਤਰ ਸਾਡੇ ਕੋਲ ਹੈ (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਜਾਤੇ ਕੋਲ ਹੈ (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਜਾਤੇ ਕੋਲ ਹੈ (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਜਾਤੇ ਕੋਲ ਹੈ (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਜਾਤੇ ਕੋਲ ਹੈ (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਲ ਕੋਲ ਹੈ ਜਾਤੇ ਕੋਲ ਜਾਤੇ ਕੋ			
(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 4 (d) 2 ਅੱਸਤ 4 ਨਾਲ Poisson distribution ਦਾ ਵਿਸਥਾਪਣ ਦਾ ਗੁਣਾਂਕ ਹੈ: (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 4 (d) 2 51. The mean and variance of Chi-square distribution with n degrees of freezepectively (a) $2n$ and n (b) n^2 and \sqrt{n} (c) \sqrt{n} and n^2 (d) n and $2n$ n degrees of freedom ਨਾਲ Chi-square ਵੰਡ ਦੇ ਅੱਸਤ ਅਤੇ ਵਿਚਲਣ ਹਨ ਕ੍ਰਮਵਾਰ (a) $2n$ ਅਤੇ n (b) n^2 ਅਤੇ \sqrt{n} (c) \sqrt{n} ਅਤੇ n^2 (d) n ਅਤੇ $2n$ 52. For a normal distribution, the area to the right hand side of the point x_1 is 0.6 hand side of the point x_2 is 0.7 , then we have (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) none of th ਇੱਕ ਸਧਾਰਨ ਵੰਡ ਲਈ ਬਿੰਦੂ x_1 ਦੇ ਸੱਜੇ ਪਾਸੇ ਦਾ ਖੇਤਰ 0.6 ਹੈ ਅਤੇ ਬਿੰਦੂ x_2 ਖੇਬੇ ਪਾਸੇ ਵੱਲ ਖੇਤਰ ਸਾਡੇ ਕੋਲ ਹੈ (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ 3. Let T_n be an estimator, based on a sample x_1 , x_2 ,, x_n , of the parameter θ . consistent estimator of θ if (a) $P(T_n - \theta > \epsilon) = 0$ $\forall \epsilon > 0$ (b) $P(T_n - \theta < \epsilon) = 0$ (c) $\lim_{n \to \infty} P(T_n - \theta < \epsilon) = 0$ $\forall \epsilon > 0$ ਮੰਨ ਲਉ T_n , x_1 , x_2 ,, x_n , ਸੌਂਪਲ 'ਤੇ ਅਧਾਰਤ ਪੈਰਾਮੀਟਰ θ ਦਾ ਇੱਕ ਨਿਰਧਾਰਕ ਹੈ, ਫਿ ਇੱਕ ਸਥਿਰ ਨਿਰਧਾਰਕ ਹੈ ਜੇਕਰ (a) $P(T_n - \theta > \epsilon) = 0$ $\forall \epsilon > 0$ (b) $P(T_n - \theta < \epsilon) = 0$	49.	$P[X_{n+1} = i_{n+1}/X_0 = i_{0,}X_1 = i_1, \dots, X_n = i_n] = P[X_{n+1} = i_{n+1}]$ $P[X_{n+1} = i_{n+1}/X_0 = i_{0,}X_1 = i_1, \dots, X_n = i_n] = P[X_n = i_n]$ None of these ਕਿ ਲੜੀ $\{X_n\}$ Markov Chain ਕਹਾਉਂਦੀ ਹੈ ਜੇਕਰ ਸਾਰੇ $i_{0,}i_{1,}i_{2,}, \dots, i_{n+1} \in I \& \forall n \ \aleph $ $P[X_{n+1} = i_{n+1}/X_0 = i_{0,}X_1 = i_1, \dots, X_n = i_n] = P[X_{n+1} = i_{n+1}/X_n = i_n]$ $P[X_{n+1} = i_{n+1}/X_0 = i_{0,}X_1 = i_1, \dots, X_n = i_n] = P[X_{n+1} = i_{n+1}]$ $P[X_{n+1} = i_{n+1}/X_0 = i_{0,}X_1 = i_1, \dots, X_n = i_n] = P[X_n = i_n]$	
(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 4 (d) 2 ਅੱਸਤ 4 ਨਾਲ Poisson distribution ਦਾ ਵਿਸਥਾਪਣ ਦਾ ਗੁਣਾਂਕ ਹੈ: (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 4 (d) 2 51. The mean and variance of Chi-square distribution with n degrees of freezepectively (a) $2n$ and n (b) n^2 and \sqrt{n} (c) \sqrt{n} and n^2 (d) n and $2n$ n degrees of freedom ਨਾਲ Chi-square ਵੰਡ ਦੇ ਅੱਸਤ ਅਤੇ ਵਿਚਲਣ ਹਨ ਕ੍ਰਮਵਾਰ (a) $2n$ ਅਤੇ n (b) n^2 ਅਤੇ \sqrt{n} (c) \sqrt{n} ਅਤੇ n^2 (d) n ਅਤੇ $2n$ 52. For a normal distribution, the area to the right hand side of the point x_1 is 0.6 hand side of the point x_2 is 0.7 , then we have (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) none of th ਇੱਕ ਸਧਾਰਨ ਵੰਡ ਲਈ ਬਿੰਦੂ x_1 ਦੇ ਸੱਜੇ ਪਾਸੇ ਦਾ ਖੇਤਰ 0.6 ਹੈ ਅਤੇ ਬਿੰਦੂ x_2 ਖੇਬੇ ਪਾਸੇ ਵੱਲ ਖੇਤਰ ਸਾਡੇ ਕੋਲ ਹੈ (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ 3. Let T_n be an estimator, based on a sample x_1 , x_2 ,, x_n , of the parameter θ . consistent estimator of θ if (a) $P(T_n - \theta > \epsilon) = 0$ $\forall \epsilon > 0$ (b) $P(T_n - \theta < \epsilon) = 0$ (c) $\lim_{n \to \infty} P(T_n - \theta < \epsilon) = 0$ $\forall \epsilon > 0$ ਮੰਨ ਲਉ T_n , x_1 , x_2 ,, x_n , ਸੌਂਪਲ 'ਤੇ ਅਧਾਰਤ ਪੈਰਾਮੀਟਰ θ ਦਾ ਇੱਕ ਨਿਰਧਾਰਕ ਹੈ, ਫਿ ਇੱਕ ਸਥਿਰ ਨਿਰਧਾਰਕ ਹੈ ਜੇਕਰ (a) $P(T_n - \theta > \epsilon) = 0$ $\forall \epsilon > 0$ (b) $P(T_n - \theta < \epsilon) = 0$	50.	ne coefficient of dispersion of Poisson distribution with mean 4 is	
 (a) 1/4 (b) 1/2 (c) 4 (d) 2 51. The mean and variance of Chi-square distribution with n degrees of freespectively (a) 2n and n (b) n² and √n (c) √n and n² (d) n and 2n n degrees of freedom ਨਾਲ Chi-square ਵੰਡ ਦੇ ਅੱਸਤ ਅਤੇ ਵਿਚਲਣ ਹਨ ਕ੍ਰਮਵਾਰ (a) 2n ਅਤੇ n (b) n² ਅਤੇ √n (c) √n ਅਤੇ n² (d) n ਅਤੇ 2n 52. For a normal distribution, the area to the right hand side of the point x₁ is 0.6 hand side of the point x₂ is 0.7, then we have (a) x₁ > x₂ (b) x₁ < x₂ (c) x₁ = x₂ (d) none of th ਇੱਕ ਸਪਾਰਨ ਵੰਡ ਲਈ ਬਿੰਦੂ x₁ ਦੇ ਸੱਜੇ ਪਾਸੇ ਦਾ ਖੇਤਰ 0.6 ਹੈ ਅਤੇ ਬਿੰਦੂ x₂ ਖੱਬੇ ਪਾਸੇ ਵੱਲ ਖੇਤਰ ਸਾਡੇ ਕੋਲ ਹੈ (a) x₁ > x₂ (b) x₁ < x₂ (c) x₁ = x₂ (d) Evori ਵਿੱਚ 53. Let Tn be an estimator, based on a sample x₁, x₂,, xn, of the parameter θ. consistent estimator of θ if (a) P(Tn - θ > ε) = 0 ∀ε > 0 (b) P(Tn - θ < ε) = 0 (c) lim P(Tn - θ < ε) = 0 ∀ε > 0 (d) lim P(Tn - θ < ε) = 0 ∀ε > 0 (e) lim P(Tn - θ < ε) = 0 ∀ε > 0 (f) ਮੌਨ ਲਉ Tn, x₁, x₂,, xn, ਸੈਂਪਲ 'ਤੇ ਅਧਾਰਤ ਪੈਰਾਮੀਟਰ θ ਦਾ ਇੱਕ ਨਿਰਧਾਰਕ ਹੈ, ਫਿ ਇੱਕ ਸਥਿਰ ਨਿਰਧਾਰਕ ਹੈ ਜੇਕਰ (a) P(Tn - θ > ε) = 0 ∀ε > 0 (b) P(Tn - θ < ε) = 0) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 4 (d) 2	
respectively (a) $2n$ and n (b) n^2 and \sqrt{n} (c) \sqrt{n} and n^2 (d) n and $2n$ n degrees of freedom ਨਾਲ Chi-square ਵੰਡ ਦੇ ਔਸਤ ਅਤੇ ਵਿਚਲਣ ਹਨ ਕ੍ਰਮਵਾਰ (a) $2n$ ਅਤੇ n (b) n^2 ਅਤੇ \sqrt{n} (c) \sqrt{n} ਅਤੇ n^2 (d) n ਅਤੇ $2n$ 52. For a normal distribution, the area to the right hand side of the point x_1 is 0.6 hand side of the point x_2 is 0.7 , then we have (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) none of the ਇੱਕ ਸਧਾਰਨ ਵੰਡ ਲਈ ਬਿੰਦੂ x_1 ਦੇ ਸੱਜੇ ਪਾਸੇ ਦਾ ਖੇਤਰ 0.6 ਹੈ ਅਤੇ ਬਿੰਦੂ x_2 ਖੱਬੇ ਪਾਸੇ ਵੱਲ ਖੇਤਰ ਸਾਡੇ ਕੋਲ ਹੈ . (a) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ 53. Let T_n be an estimator, based on a sample x_1 , x_2 ,, x_n , of the parameter θ consistent estimator of θ if (a) $P(T_n - \theta > \epsilon) = 0$ $\forall \epsilon > 0$ (b) $P(T_n - \theta < \epsilon) = 0$ (c) $\lim_{n \to \infty} P(T_n - \theta < \epsilon) = 0$ $\forall \epsilon > 0$ (d) $\lim_{n \to \infty} P(T_n - \theta < \epsilon) = 0$ $\forall \epsilon > 0$ ਮੰਨ ਲਉ T_n , T_n , T_n , T_n , T_n , T_n , T_n T_n T_n T_n , T_n		The state of the s	
 (a) 2n ਅਤੇ n (b) n² ਅਤੇ √n (c) √n ਅਤੇ n² (d) n ਅਤੇ 2n 52. For a normal distribution, the area to the right hand side of the point x₁ is 0.6 hand side of the point x₂ is 0.7, then we have (a) x₁ > x₂ (b) x₁ < x₂ (c) x₁ = x₂ (d) none of th ਇੱਕ ਸਪਾਰਨ ਵੰਡ ਲਈ ਬਿੰਦੂ x₁ ਦੇ ਸੱਜੇ ਪਾਸੇ ਦਾ ਖੇਤਰ 0.6 ਹੈ ਅਤੇ ਬਿੰਦੂ x₂ ਖੱਬੇ ਪਾਸੇ ਵੱਲ ਖੇਤਰ ਸਾਡੇ ਕੋਲ ਹੈ (a) x₁ > x₂ (b) x₁ < x₂ (c) x₁ = x₂ (d) ਇਹਨਾਂ ਵਿੱਚੋ 53. Let Tn be an estimator, based on a sample x₁, x₂,, xn, of the parameter θ. consistent estimator of θ if (a) P(Tn - θ > ε) = 0 ∀ε > 0 (b) P(Tn - θ < ε) = 0 (c) lim P(Tn - θ < ε) = 0 ∀ε > 0 (d) lim P(Tn - θ < ε) = 0 ∀ε > 0 (e) lim P(Tn - θ < ε) = 0 ∀ε > 0 (f) ਲੋਰ ਲਉ Tn, x₁, x₂,, xn, ਸੈਂਪਲ 'ਤੇ ਅਧਾਰਤ ਪੈਰਾਮੀਟਰ θ ਦਾ ਇੱਕ ਨਿਰਧਾਰਕ ਹੈ, ਵਿੱੱਕ ਸਥਿਰ ਨਿਰਧਾਰਕ ਹੈ ਜੇਕਰ (a) P(Tn - θ > ε) = 0 ∀ε > 0 (b) P(Tn - θ < ε) = 0 	51.) $2n$ and n (b) n^2 and \sqrt{n} (c) \sqrt{n} and n^2 (d) n and $2n$	re
 52. For a normal distribution, the area to the right hand side of the point x₁ is 0.6 hand side of the point x₂ is 0.7, then we have (a) x₁ > x₂ (b) x₁ < x₂ (c) x₁ = x₂ (d) none of th ਇੱਕ ਸਧਾਰਨ ਵੰਡ ਲਈ ਬਿੰਦੂ x₁ ਦੇ ਸੱਜੇ ਪਾਸੇ ਦਾ ਖੇਤਰ 0.6 ਹੈ ਅਤੇ ਬਿੰਦੂ x₂ ਖੱਬੇ ਪਾਸੇ ਵੱਲ ਖੇਤਰ ਸਾਂਡੇ ਕੋਲ ਹੈ (a) x₁ > x₂ (b) x₁ < x₂ (c) x₁ = x₂ (d) ਇਹਨਾਂ ਵਿੱਚੋ 53. Let Tn be an estimator, based on a sample x₁, x₂,, xn, of the parameter θ. consistent estimator of θ if (a) P(Tn - θ > ε) = 0 ∀ε > 0 (b) P(Tn - θ < ε) = 0 (c) lim P(Tn - θ > ε) = 0 ∀ε > 0 (d) lim P(Tn - θ < ε) = 0 ∀ε > 0 (e) lim P(Tn - θ < ε) = 0 ∀ε > 0 (f) ਲਉ Tn, x₁, x₂,, xn, ਸੈਂਪਲ 'ਤੇ ਅਧਾਰਤ ਪੈਰਾਮੀਟਰ θ ਦਾ ਇੱਕ ਨਿਰਧਾਰਕ ਹੈ, ਵਿ ਇੱਕ ਸਥਿਰ ਨਿਰਧਾਰਕ ਹੈ ਜੇਕਰ (a) P(Tn - θ > ε) = 0 ∀ε > 0 (b) P(Tn - θ < ε) = 0 			
 53. Let T_n be an estimator, based on a sample x₁, x₂,, x_n, of the parameter θ. consistent estimator of θ if (a) P(T_n − θ > ε) = 0 ∀ε > 0 (b) P(T_n − θ < ε) = 0 (c) lim P(T_n − θ > ε) = 0 ∀ε > 0 (d) lim P(T_n − θ < ε) = 0 ∀ε > 0 ਮੰਨ ਲਉ T_n, x₁, x₂,, x_n, ਸੈਂਪਲ 'ਤੇ ਅਧਾਰਤ ਪੈਰਾਮੀਟਰ θ ਦਾ ਇੱਕ ਨਿਰਧਾਰਕ ਹੈ, ਫਿ ਇੱਕ ਸਥਿਰ ਨਿਰਧਾਰਕ ਹੈ ਜੇਕਰ (a) P(T_n − θ > ε) = 0 ∀ε > 0 (b) P(T_n − θ < ε) = 0 	52.	or a normal distribution, the area to the right hand side of the point x_1 is 0.6 and to le and side of the point x_2 is 0.7, then we have $\begin{array}{cccccccccccccccccccccccccccccccccccc$	ਤਾਂ
consistent estimator of θ if (a) $P(T_n - \theta > \epsilon) = 0 \ \forall \epsilon > 0$ (b) $P(T_n - \theta < \epsilon) = 0$ (c) $\lim_{n \to \infty} P(T_n - \theta > \epsilon) = 0 \ \forall \epsilon > 0$ (d) $\lim_{n \to \infty} P(T_n - \theta < \epsilon) = 0 \ \forall \epsilon > 0$ ਮੰਨ ਲਉ $T_n, x_1, x_2, \dots, x_n$, ਸੈਂਪਲ 'ਤੇ ਅਧਾਰਤ ਪੈਰਾਮੀਟਰ θ ਦਾ ਇੱਕ ਨਿਰਧਾਰਕ ਹੈ, ਫਿ ਇੱਕ ਸਥਿਰ ਨਿਰਧਾਰਕ ਹੈ ਜੇਕਰ (a) $P(T_n - \theta > \epsilon) = 0 \ \forall \epsilon > 0$ (b) $P(T_n - \theta < \epsilon) = 0$) $x_1 > x_2$ (b) $x_1 < x_2$ (c) $x_1 = x_2$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀ	•
(c) $\lim_{n\to\infty} P(T_n - \theta > \epsilon) = 0 \ \forall \epsilon > 0$ (d) $\lim_{n\to\infty} P(T_n - \theta < \epsilon) = 0 \ \forall \epsilon > 0$	53.	$P(T_n - \theta > \epsilon) = 0 \ \forall \epsilon > 0$ $P(T_n - \theta < \epsilon) = 0$ $\lim_{n \to \infty} P(T_n - \theta > \epsilon) = 0 \ \forall \epsilon > 0$ $\lim_{n \to \infty} P(T_n - \theta < \epsilon) = 0 \ \forall \epsilon > 0$ $\int R \otimes T_n, X_1, X_2, \dots, X_n, \hat{H}$ ਪਲ 'ਤੇ ਅਧਾਰਤ ਪੈਰਾਮੀਟਰ θ ਦਾ ਇੱਕ ਨਿਰਧਾਰਕ ਹੈ, ਫਿਰ $T_n, \theta \in \mathbb{R}$ ਸਥਿਰ ਨਿਰਧਾਰਕ ਹੈ ਜੇਕਰ $P(T_n - \theta > \epsilon) = 0 \ \forall \epsilon > 0$ $P(T_n - \theta < \epsilon) = 0$ $P(T_n - \theta < \epsilon) = 0$ $\lim_{n \to \infty} P(T_n - \theta > \epsilon) = 0 \ \forall \epsilon > 0$	

54	
	against [2] alternative hypothesis. Here (a) [1] = simple, [2] = simple (b) [1] = simple, [2] = composite
	(c) [1] = composite, [2] = simple (d) none of these
	Neyman-Pearson lemma [1] null hypothesis against [2] alternative hypothesis ਦੀ ਜਾਂਚ ਲਈ ਸਭ ਤੋਂ ਉੱਤਮ ਵਿਸ਼ਲੇਸ਼ਣਵੀ ਖੇਤਰ ਦੱਸਦਾ ਹੈ
	(a) [1] = ਸਧਾਰਨ, [2] = ਸਧਾਰਨ, (b) [1] = ਸਧਾਰਨ, [2] = ਜਟਿਲ
	(a) [1] = ਸਥਾਰਨ, [2] = ਸਥਾਰਨ, (b) [1] ਜਥਾਰਨ, (c) [1] = ਜਟਿਲ, [2] ⊨ ਸਥਾਰਨ, (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
:	(9) [1-]
55	. The likelihood ratio test is used for testing [1] null hypothesis against [2] alternative hypothesis. Here
	(a) [1] = simple or composite, [2] = simple or composite
	(b) [1] = simple, [2] = simple
	(c) [1] = composite, [2] = composite
	(d) none of these
	(t) Hohe of these [2] null hypothesis against [2] alternative hypothesis ਦੀ ਜਾਂਚ ਲਣ ਸਿਮ-ਅਨੁਪਾਤਕ ਨਿਰੀਖਣ ਹੈ:
	(a) [1] = ਸਧਾਰਨ ਜਾਂ ਜਟਿਲ, [2] = simple or composite
	(b) [1] = ਸਧਾਰਨ , [2] = ਸਧਾਰਨ
	(c) [1] = ਜਟਿਲ, [2] = ਜਲਿਟ
	(d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
56	For the validity of F-test in the analysis of variance, the following assumption is/are made:
	(a) the observations are independent.
	 (b) the parent population from which observations are taken is normal. (c) the various treatment and environment effects are additive in nature.
	(d) all of these
	ਕਿੰਨਤਾ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ F-test ਦੀ ਵੈਧਤਾ ਲਈ, ਹੇਠ ਲਿਖੀਆਂ ਮਾਨਤਾਵਾਂ ਬਣਾਈਆਂ ਗਈਆਂ ਹਨ:
	(a) ਤੱਥ ਸੁਤੰਤਰ ਹਨ
	(b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ
	(с) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ
-	(d) ਇਹ ਸਾਰੇ
5'	7. If $X_{p\times 1} \sim N_p(\mu, \Sigma)$, then AX follows, where A is a matrix of rank $q \leq p$,
•	(a) $N(AuA\Sigma A')$ (b) $N_a(AuA\Sigma A')$
÷	(c) $N_{\alpha}(A\mu, A'\Sigma A)$ (d) $N_{\alpha}(A\mu, A'\Sigma A)$
	(c) $N_p(A\mu,A'\Sigma A)$ (d) $N_q(A\mu,A'\Sigma A)$ ਜੇਕਰ $X_{p\times 1}\sim N_p(\mu,\Sigma)$ ਫਿਰ AX ਪਾਲਣਾ ਕਰਦਾ ਹੈ ਜਿੱਥੇ A $q\leq p$ ਦਰਜੇ ਦਾ ਮੈਟਰਿਕਸ ਹੈ
	(a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$
	(c) $N_p(A\mu, A'\Sigma A)$ (d) $N_q(A\mu, A'\Sigma A)$
	21 11 11 11 11 11 11 11 11 11 11 11 11 1
5	specified units in the population of size N to be included in the sample of size n is
	(c) $\frac{n(n-1)}{n}$ (d) none of these
	(a) $\frac{n(n-1)}{N(N-1)}$ (b) $\frac{n}{N}$ (c) $\frac{(n-1)}{(N-1)}$ (d) none of these ਬਦਲਾਅ ਤੋਂ ਬਿਨ੍ਹਾ, ਸਧਾਰਨ ਫੈਂਡਮ ਸੈਂਪਲਿੰਗ ਵਿੱਚ N ਅਕਾਰ ਦੀ ਜਨਸੰਖਿਆ ਵਿੱਚ ਸੈਂਪਲ ਅਕਾਰ n ਵਿਚ ਸ਼ਾਮਨ
	ਬਦਲਾਅ ਤ ਬਿਨ੍ਹਾ, ਸਪਾਰਨ ਖ਼ਡਮ ਸਪਾਲਗ ਵਿਚ N ਅਕਾਰ ਦਾ ਜਨਮਾਰਆ ਵਿਚ ਸਪਾਲ ਅਕਾਰ ਜਾ ਵਿਚ ਨਾਸਟ
	ਕਰਨ ਲਈ ਦੋ ਵਿਸ਼ੇਸ਼ ਜੁੱਟਾਂ ਦੀ ਸੰਭਾਵਕੀ ਹੈ: $\binom{n(n-1)}{2}$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
	Danar II (Mathe
C	\cdot
C	

								and the second second
59.	The	stratified samplin	g is u	sually prefe	rred w	hen the nature o	f popul	ation is
	(a)	heterogeneous	(b)	homogeno	ous (c)	any type	(d)	none of these
		ਾਬੰਦ ਸੈਂਪਲਿੰਗ ਨੂੰ ਤਰ						
	(a)	ਭਿੰਨਤਾਪੁਰਕ	(b)	ਸਮਰੂਪ	(c)	ਕਿਸੇ ਵੀ ਤਰਾਂ ਦੇ	(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
60.	The per	ratio estimator of unit estimator if co	popul orrelat	lation mean	of study	ly variable is us variable and au	ually b xiliary	etter than simple mean variable is
	(a)	negative	(b)	positive	(c)	zero	(d)	none of these
	ਜੇਕਰ ਨਾਲੋਂ	ਅਧਿਐਨ ਚਰ ਦੇ ਜ ਬਿਹਤਰ ਹੈ ਜੇਕਰ stu	ਨਸੰਖਿਆ dv va	ਆਂ ਔਸਤ ਦਾ riable ਅਤੇ a	ਉਨੁਮਾਨ: uxilian	ਤ ਅਨੁਪਾਤ ਪ੍ਰਤੀ ਇ v variable ਵਿਜਨਾ	ਤਕਾਈ [ੰ] ਅ	ਮਨਮਾਨਕ ਤੇ ਸਧਾਰਨ ਔਸਤ
-	(a)	ਰਿਣਾਤਮਕ						ਬਬ ਹੈ: ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
61.	In a squa	Latin Square De res for a fixed effe	esign ect mo	with <i>m</i> tre	atment	ts, the degrees	of free	dom of error sum of
	(a)	(m-1)(m-2)	(b)	(m-1)	(c)	(m-2)	(d)	none of these
	m f	ਵਵਹਾਰਾਂ ਨਾਲ ਇੱਲ ਲ	ਾਤੀਨੀ	ਵਰਗਾਕਾਰ ਰ	ਚਨਾ ਵਿੱਚ	ਤ [ੇ] ਇੱਕ ਸਥਿਰ ਮਾਡ	ਲ ਲਈ '	ਤਰੁਟੀਆਂ ਦੇ ਵਰਗਾਂ ਦੇ ਜੋੜਾਂ
	ਦੀਆਂ	degrees of freedo	m ਹੈ					-30117 0 2001 2 114
	(a)	(m-1)(m-2)	(b)	(m-1)	(c)	(m-2)	(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
62.	In a	2 ³ – factorial desig	gn of e	experiment,	the nu	mber of treatme	nts are	·
	(a)	7	(b)	6	(c)	5	(d)	8
	ਪ੍ਰਯੋਗ	ਦੀ 2³– ਫੈਕਟੋਰੀਅਲ	ਰਚਨਾ	ਵਿੱਚ, ਵਿਵਹ	ਾਰਾਂ ਦੀ 2	ਸੰਖਿਆ ਹੈ	` ,	
	(a)	7	(b)	6	(c)	5	(d)	8
63.	For a	balanced incomp	lete b	lock design	with p	arameters V, b, 1	r. k,λ , [,]	we have
	(a)	Vr = bk				$\lambda(V-1)=r(t)$		
	(c)	$b \ge r$	•		(d)	all of these		
	ਪੈਰਾਮੰ	ੀਟਰਾਂ $V,b,r,k,\lambda,$ ਨ	ਾਲ ਇੱ	ਕ ਸੰਤੁਲਿਤ ਅ	<i>ਮ</i> ੂਰਨ ਬ	ਲਾਕ ਰਚਨਾ ਲਈ,	ਸਾਡੇ ਕੋਲ	ਰ ਹੈ:
•		Vr = bk			-	$\lambda(V-1)=r(i$		
	(c)	$b \ge r$	٠			ਇਹ ਸਾਰੇ	,	
64.	If p _i paral	denote the reliab lel system is giver	ility o	of the ith co	ompone	ent; $i = 1,2,$. , n 1	then the reliability of
	(a)	$\prod_{i=1}^n p_i$			(b)	$1-\prod_{i=1}^n(1-p$	p_i)	
	(c)	$\prod_{i=1}^n (1-p_i)$				$1-\prod_{i=1}^n p_i$	-	
	ਜੇਕਰ		1,2,	,n ਦੀ			ਾਂ ਸਮਾਂਨ	ਾਂਤਰ ਪ੍ਰਣਾਲੀ ਦੀ ਸਥਿਰਤਾ
		$\prod_{i=1}^n p_i$			(b)	$1-\prod_{i=1}^n(1-p)$))	
		$\prod_{i=1}^n (1-p_i)$				$1 - \prod_{i=1}^n p_i$.,	
Paper	-II (M:		÷		14	**t=1 L t		C
								C

65.	Let S be a convex subset of the plane, $z=c_1x_1+c_2x_2$, $\forall (x_1,x_2)$ bounded by lines in the plane. Then, a linear function where c_1 , c_2 are scalars, attains its optimum value at (a) The origin only (b) any points (c) the vertices only (d) None of these ਮੰਨ ਲੳ ਪਲੇਨ ਵਿੱਚ S ਇੱਕ ਉੱਤਲ ਉਪ-ਸਮੂਹ ਹੈ ਜੋ ਕਿ ਪਲੇਨ ਵਿੱਚ ਰੇਖਾਵਾਂ ਦੁਆਰਾ ਬੰਨਿਆ ਗਿਆ ਹੈ। ਫਿਰ ਰੇਖਾਬੱਧ ਫਲਨ $z=c_1x_1+c_2x_2$, $\forall (x_1,x_2) \in S$ ਇਸਦਾ ਉੱਚਤਮ ਮੁੱਲ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੈ ਜਦੋਂ c_1 , c_2 ਸਕੇਲਰ ਹਨ: (a) ਸਿਰਫ ਅਰੰਭ (b) ਕੋਈ ਵੀ ਬਿੰਦੂ (c) ਸਿਰਫ ਸਿਰੇ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
66.	Given a set of vectors $\{x_1, x_2,, x_k\}$, a linear combination $x = \lambda_1 x_1 + \lambda_2 x_2 +$, $\lambda_k x_k$ is called a convex combination of the given vectors if (a) $\lambda_1, \lambda_2,, \lambda_k \geq 0$ and $\sum_{i=1}^{i=k} \lambda_i = 1$ (b) $\lambda_1, \lambda_2,, \lambda_k \geq 0$ and $\sum_{i=1}^{i=k} \lambda_i \neq 1$ (c) $\forall \lambda_i^s$ and $\sum_{i=1}^{i=k} \lambda_i = 1$ (d) None of these ਵੈਕਟਰਾਂ ਦੇ ਇੱਕ ਦਿੱਤੇ ਹੋਏ ਸੈੱਟ $\{x_1, x_2,, x_k\}$, ਰੇਖਾਬੱਧ ਸੰਯੋਜਨ $x = \lambda_1 x_1 + \lambda_2 x_2 +, \lambda_k x_k$ ਦਿੱਤੇ ਗਏ ਵੈਕਟਰਾਂ ਦਾ ਉੱਤਲ ਸੰਯੋਜਨ ਕਹਾਉਂਦਾ ਹੈ ਜੇਕਰ (a) $\lambda_1, \lambda_2,, \lambda_k \geq 0$ and $\sum_{i=1}^{i=k} \lambda_i = 1$ (b) $\lambda_1, \lambda_2,, \lambda_k \geq 0$ and $\sum_{i=1}^{i=k} \lambda_i \neq 1$ (c) $\forall \lambda_i^s$ and $\sum_{i=1}^{i=k} \lambda_i = 1$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
67. 68.	A queuing system $M/G/1$ has (a) a single channel (b) an exponential inter-arrival time distribution (c) arbitrary service time distribution (d) all of these ਇੱਕ ਕਤਾਰ ਪ੍ਣਾਲੀ $M/G/1$ ਦਾ ਹੈ (a) ਇੱਕ ਇਕਹਿਰਾ ਰਸਤਾ (b) ਇੱਕ ਅੰਤਰ ਪਹੁੰਚ ਸਮਾਂ ਵੰਡ (c) ਸਾਲਸੀ ਸੇਵਾ ਸਮਾਂ ਵੰਡ (d) ਇਹ ਸਾਰੇ If n components, functioning independently, are connected in series, and if the i th component has reliability $R_i(t)$ then the reliability of the entire system $R(t)$ is given by
	(a) $R(t) = R_1(t) + R_2(t) + \dots + R_n(t)$ (b) $R(t) = R_1(t) \cdot R_2(t) \cdot \dots \cdot R_n(t)$ (c) $R(t) = R_1(t) \cdot R_2(t) + R_3(t) \cdot R_4(t) + \dots + R_{n-1}(t) \cdot R_n(t)$ (d) $R(t) = R_1(t) - R_2(t) + R_3(t) - R_4(t) + \dots + R_{n-1}(t) - R_n(t)$ ਜੇਕਰ ਸੁਤਮਤਰ ਰੂਪ ਵਿੱਚ ਕੰਮ ਕਰਦੇ n ਤੱਤ ਇਕ ਲੜੀ ਵਿੱਚ ਜੁੜੇ ਹੋਏ ਹਨ, ਜੇਕਰ i^{th} ਤੱਤ ਦੀ ਸਥਿਰਤਾ $R_i(t)$ ਹੈ ਤਾਂ ਸਾਰੀ $R(t)$ ਪ੍ਰਣਾਲੀ ਦੀ ਸਥਿਰਤਾ ਹੋਵੇਗੀ: (a) $R(t) = R_1(t) + R_2(t) + \dots + R_n(t)$

 $R(t) = R_1(t).R_2(t) + R_3(t).R_4(t) + \dots + R_{n-1}(t).R_n(t)$ $R(t) = R_1(t) - R_2(t) + R_3(t) - R_4(t) + \dots + R_{n-1}(t) - R_n(t)$

 $R(t) = R_1(t).R_2(t).R_n(t)$

(b)

(c) (d)

69.	If A and B are two sets, then $A \cup B = A \cap B$ if and only if											
	(a)	A⊆B	(b)	$B \subseteq A$	(c)	A = B	(d)	A≠B				
	ਜੇ A	. ਅਤੇ B ਦੋ ਸੈਂਟ ਹਨ	, ਫਿਰ ⁄	$A \cup B = A \cap$	В ਸਿਰਫ	ਤ ਅਤੇ ਸਿਰਫ		-				
	(a)	A⊆B	(b)	B⊊A	(c)	A = B	(d)	A≠B				
70.	If a	$N = \{ax : x \in$	N}, the	n the set 21	N∩6N	is		•				
	(a)	2N	(b)	4N	(c)	6N	(d)	12N				
	ने a	$N = \{ax : x \in$	N} ਫਿਰ	ਾ ਸੈੱਟ 2N∩6	รท ฮิ :							
	(a)	2N	(b)	4N	(c)	6N	(d)	12N				
71.	The	number of prope	er subse	ets of the se	et {x, y,	, z} is			··			
	(a)	6	(b)	7	(c)	8	(d)	2				
	ਸੈਂਟ	{x, y, z} ਦੇ ਪੂਰਨ ≀	ਸਬਸੈੱਟਾ <u>ਂ</u>	ਦੀ ਗਿਣਤੀ ਹੈ	i:							
	(a)	6 °	(b)	7	(c)	8	(d)	2				
72.	perc (a)	city, 30 percent cent travels by bo 75	th car a	and bus. Th 45	e perso (c)	ons travelling by	y car or t (d)	ous is 60				
	ਇੱਕ ਸ਼ਹਿਰ ਵਿਚ 30% ਜਨਸੰਖਿਆਂ ਕਾਰ ਦੁਆਰਾ ਸਫ਼ਰ ਕਰਦੀ ਹੈ ਅਤੇ 45% ਬੱਸ ਦੁਆਰਾ ਅਤੇ 15% ਕਾਰ ਅਤੇ ਬੱਸ ਦੋਨਾਂ ਦੁਆਰਾ, ਕਿੰਨੇ ਪ੍ਰਤੀਸ਼ਤ ਲੋਕ ਕਾਰ ਜਾਂ ਬੱਸ ਦੁਆਰਾ ਸਫ਼ਰ ਕਰਦੇ ਹਨ											
٠	(a)	75	(b)	45	(c)	30	(d)	60				
73.	If A = { $(x, y) : x^2 + y^2 = 25$ } and B = { $(x, y) : x^2 + 9y^2 = 144$ } then A\cap B contains											
	(a)	no point	(b)					3 points				
	ने A	$= \{ (x, y) : x^2 + y$	$r^2 = 25$	} ਅਤੇ B = {	(x, y):	$x^2 + 9y^2 = 144$	} ਫਿਰ Aí	ੇΒ ਵਿਚ ਸ਼ਾਮ	ਲ ਹਨ			
	(a)	ਕੋਈ ਅੰਕ ਨਹੀਂ	(b)	4 ਅੰਕ	(c)	2 ਅੰਕ	(d)	3 ਅੰਕ				
74.	If 2	< x < 3 then										
	(a)	(x-3)(x-2)) < 0		(b)	(x-3)(x-	2) > 0					
	(c)	$\frac{(x-3)}{(x-2)}>0$			(d)	(x-3) > ((x-2)					
	ਜੇ 2	< x < 3 दित										
	(a)	(x-3)(x-2)) < 0		(b)	(x-3)(x-	2) > 0					
	(c)	$\frac{(x-3)}{(x-3)} > 0$			(d)	(x-3) > 0	r – 21	• •				

16

 \mathbf{C}

Paper-II (Maths)

<i>75</i> .	The eq	quation $ x + 4 $	= x h	nas solutior	1								
,	` '	x = 2 ਨ $ x + 4 = x$	` '	x = -2	(c)	<i>x</i> =	-4	(d)	x = 4	ł			
٠,	(a) 2	x = 2	(b) :	x = -2	(c)	x =	-4	(d)	x = 4	ŀ			
76.		one of the follo	_										
	(/	The set of natura											
	(-)	The set of rationa											
	(-)	The set of irration				e.	è						
	` '	The set of real nu	-		le.								
		ਖਿਆਂ ਵਿਚੋਂ ਕਿਹੜਾ											
		ਕੁਦਰਤੀ ਸੰਖਿਆਵਾਂ ਚ	_	_	ੀ ਹੈ								
	(~)	ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਚ											
	(c) ³												
	(d)	ਅਸਲ ਸੰਖਿਆਵਾਂ ਦਾ	मैंस विव	ਣਨਸ਼ੀਲ ਹੈ									
77.	Which	n one of the follo	wing st	atements is	s inco	rect?							
		Every non-empty											
		Every non-empty											
	· 1	Every non-empt bounded.	-					num	and inf	imum i	f it is		
		ਹੇਠ ਲਿਖਿਆ ਵਿਚੋਂ ਕਿਹੜਾ ਕਥਨ ਗਲਤ ਹੈ ?											
	(a) ਹਰ ਅਸਲ ਸੰਖਿਆਵਾਂ ਦਾ ਨਾ–ਖਾਲੀ ਸੈੱਟ ਜੋ ਉੱਪਰ ਗਠਿਤ ਹੈ, infimum ਹੈ												
	(b) ਹਰ ਅਸਲ ਸੰਖਿਆਵਾਂ ਦਾ ਨਾ–ਖਾਲੀ ਸੈੱਟ ਜੋ ਉੱਪਰ ਗਠਿਤ ਹੈ supremum ਹੈ												
	(c) ਹਰ ਅਸਲ ਸੰਖਿਆਵਾਂ ਦਾ ਨਾ–ਖਾਲੀ ਸੈੱਟ ਜੇਕਰ ਗਠਿਤ ਹੈ ਤਾਂ Supremum ਅਤੇ infimum ਦੋਨੋਂ ਹੈ												
		ਅਸਲ ਸੰਖਿਆਵਾਂ ਦਾ	ਸੈਂਟ ਇੱ	ਕ ਕ੍ਮਬੱਧ ਪੂ	ਰਨ ਖੇਤ	ਰਹੈ।							
78.	If the	altitudes of a tria	ngle ar	e in A.P., t	hen th	e side	s of the trian	ngle a	re in				
		A.P.							none o	of these			
	ਜੇਕਰ ਿ	ਇੱਕ ਤਿਕੋਣ ਦੀਆਂ ਓ							:50				
	(a)	A.P.	(b)	G.P.	(c)	H.P.		(d)	ਕੋਈ ਵੰ	ਨਹੀਂ			
79.		n infinite G.P., f	•							terms, t	hen its		
	` '	1		_		-					_		
•		ਇੱਕ ਅਸੀਮ G.P. ਹ ਤਾ ਅਨੁਪਾਤ ਹੈ:	ਵੇੱਚ ਪਹਿ	ਸ਼ਨੀ ਉਕਤੀ ਬ	ਤ ਚੀਆਂ	ਉਕਤੀ	ਆਂ ਦੇ ਜੋੜ ਦੇ	ਤਿੰਨ ਰ	ਹ ੁਣਾ ਦੇ ਬ	ਰਾਬਰ ਹੈ	ਤਾਂ ਇਸ		
	(a)	1	(b)	$\frac{1}{2}$	(c)	$\frac{1}{3}$		(d)	1/4				
C					17	•			. 1	Paper-II	(Maths)		

80.		A.M., G.M. and I			-			- · · · · ·
	(a) 	a=b xxx in tibound a v		ab = 1	` '		• • •	a+b=0
		ਨਾਤਮਕ ਸੰਖਿਆਵਾਂ a						
	(a)	a = b	(0)	ab = 1	(c)	ab = 2	(a)	$\mathbf{a} + \mathbf{b} = 0$
81.		ne roots of the eq	uation	$x^3 - 12x^2$	+ 39	0x - 28 = 0 are i	in A.F	., then their common
	(a)	1	(b)	2	(c)	. 3	(d)	±3
-	ਜੇਕਰ	ਸਮੀਕਰਨ x³ - 12:	$x^2 + 1$	39x - 28 =	: 0 ਦੇ	ਮੂਲ A.P. ਵਿਚ ਹਨ ਵ	ਤਾਂ ਉਹਨ	ਨਾਂ ਦਾ ਸਾਂਝਾ ਅੰਤਰ ਹੈ :
	(a)	1	(b)	2	(c)	3	(d)	±3
82.	Sum	of n terms of the	series	$\sqrt{2} + \sqrt{8}$	+ √1	$\frac{1}{18} + \sqrt{32} + \dots$	is	
	(a)	$\frac{n}{n+1}$	(b)	$\frac{n(n+1)}{2}$	(c)	n(2n + 1)	(d)	$\frac{n(n+1)}{\sqrt{2}}$
,	$\sqrt{2}$ -	$+\sqrt{8}+\sqrt{18}+\sqrt{18}$		-				V 2
	(a)	$\frac{n}{n+1}$	(b)	$\frac{n(n+1)}{2}$	(c)	n(2n+1)	(d)	$\frac{n(n+1)}{\sqrt{2}}$
83.	The	series $\sum_{n=0}^{\infty} (2x)$	n con	verges if				
	(a)	$-1 \le x \le 1$			(b)	$-\frac{1}{2} < x < \frac{1}{2}$	•	
	(c)	-2 < x < 2			(d)	$-\frac{1}{2} \le x \le \frac{1}{2}$		
	ਲੜੀ	$\sum_{n=0}^{\infty} (2x)^n$ ਨਿਬੜਚ	ਈ ਹੈ ਜੇ	ਕਿਰ :	,	·		
	(a)	$-1 \le x \le 1$			(b)	$-\frac{1}{2} < x < \frac{1}{2}$		
•	(c)	-2 < x < 2			(d)	$-\frac{1}{2} \le x \le \frac{1}{2}$		
84.	The	sequence $< 1, -\frac{1}{2}$	$(\frac{1}{2}, -$	1, 1, >	is			
		Convergent	-	- 0		Oscillatory	(d)	None of these
	ਲੜੀ	$<1,-\frac{1}{2},\frac{1}{3},-\frac{1}{4},\frac{1}{5}$, <i></i> .	> ਹੈ				
		ਕੇਂਦਰ ਮੁਖੀ			(c)	ਅਸਥਿਰ	(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ
85.	If '	$\sum u_n$ is a positive	term s	eries and li	im	$ u \frac{1}{n} > 1$ then	the s	eries is ·
							(d)	none of these
	ਜੇਕਰ	$\sum u_n$ ਵਿੱਕ ਧਨਾਤਮਕ					` '	
	(a)			•	••	Oscillatory	~	,
Danai	-II (M	(athe)		-	10	•	- r	_

				4		•		
86.	The	series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}$,p>	1 converge	s unife	ormly for		
	(a)	x > 1	(b)	x = 1	(c)	x < 1	(d)	all real values of x
	ਕ੍ਰਮ 🄉	$\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}, p > 1$	ι ਇਕਸ	ਾਰ ਨਿਬੜਦਾ ਹੈ	:			
	(a)	x > 1	(b)	x = 1	(c)	<i>x</i> < 1	(d)	$oldsymbol{x}$ ਦੇ ਸਾਰੇ ਅਸਲ ਮੁੱਲ
		•			•	•		
87.	The	term containing			n (x –	$(2y)^7$ is	**	
	(a)	3 rd	(b)	2 nd	(c)	4 th	(d)	5 th
	(x -	· 2y) ⁷ ਦੇ ਵਿਸਤਾਰ	ਵਿੱਚ x	³ ਵਾਲੀ ਪਦ	ਹੈ:			
	(a)	ਤੀਸਰੀ	(b)	ਦੂਸਰੀ	(c)	ਚੌਥੀ	(d)	ਪੰਜਵੀ
		•						•
88.	Cons	stant term in the	expans	ion of $(x -$	1)10 i	S		
	(a)			4 th			(d)	6 th
		- 1) ¹⁰ ਦੇ ਵਿਸਤਾਰ (ਵੇਂਚ ਸਥ	ਾਈ ਪਦ ਹੈ				
		<i>x'</i> ਤੀਸਰੀ			(c)	ਪੰਜਵੀ ਂ	(d)	ਛे ਵੀं
	(α)	311101			(0)	41101	(4)	
89.	In Pa	ascal's triangle, e	ach ro	w is bounde	xd by			
	(a)	•	(b)		(c)	-1	(d)	-2
	чно	ਲ ਤਿਕੋਣ ਵਿਚ ਹਰ	ਕਤਾਰ ਹ					•
	(a)	1	(b)	2	(c)	-1	(d)	2
٠								•
90.	The	result 'Every infi	inite be	punded set o	of real	numbers has a l	imit p oi	nt' is
	(a)	Binomial theore	em		(b)	Heine-Borel ti	heorem	
	(e)	Bolzano-Weier			(d)	None of these		•
	ਨਤੀਜ	ਾ "ਅਸਲ ਸੰਖਿਆ ਵ	ਾਂ ਦੇ ਹਰੇ	ਕ਼ ਅਸੀਮ ਗਰਿ	5ਤ ਸੈਂਟ	'ਦਾ ਸੀਮਤ ਬਿੰਦੂ ਹੈ	" ਹੈ	
	(a)	ਬਾਈਨੋਮੀਅਲ ਸੂਤ	ਰ	ı	(b)	ਹਾਈਨ- ਬੋਰਲ ਸੂ	਼ ਤਰ	
	(c)	ਬੋਲਜ਼ਾਨੋ- ਵੀਅਰਸ	ਟ੍ਰਾਸ ਸੂ:	ਤ ਰ	(d)	ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ	ੀ ਨਹੀਂ	
	•	· .						
91.	The	function $f(x) =$	$2^{\frac{1}{x}}$ is	not continue	ous at			
	(a)	0	(b)			-1	(d)	any point
	ਫਲਨ	$f(x) = 2^{\frac{1}{x}}$ ਇਸ	ਜ 'ਤੇ ਟਿ	ਤਰੰਤਰ ਨਹੀਂ ਹੈ				
	(a)	0	(b)	1	(c)	-1	(d)	ਕੋਈ ਵੀ ਬਿੰਦੂ
C					19			Paper-II (Maths)

The function f(x) = |x + 2| is not differentiable at

- (b) x = -2
- (c) x = 1
- (d) x = -1

ਫਲਨ f(x) = |x + 2| ਨਿਖੇੜਮਈ ਨਹੀਂ ਹੈ

- (a)
- (b) x = -2 (c) x = 1
- (d) x = -1

93. $\frac{d}{dx} (\cos^{-1} x + \sin^{-1} x)$ is

- (a) $\frac{\pi}{2}$
- (b) 0
- (c) $\frac{2x}{1-x^2}$
- (d) $\frac{2x}{\sqrt{1-x^2}}$

 $\frac{d}{dx}\left(\cos^{-1}x+\sin^{-1}x\right)\hat{\partial}$

- (b) 0
- $(c) \quad \frac{2x}{1-r^2}$
- (d) $\frac{2x}{\sqrt{1-x^2}}$

94. If $x = t^2$ and y = 2t then $\frac{d^2y}{dx^2}$ is equal to

- (a) $-\frac{1}{t^2}$ (b) $-\frac{1}{2t^3}$ (c) $\frac{1}{2t^3}$
- (d) $\frac{1}{t^2}$

ਜੇਕਰ $x = t^2$ ਅਤੇ y = 2t ਫਿਰ $\frac{d^2y}{dx^2}$ ਬਰਾਬਰ ਹੈ

- (a) $-\frac{1}{t^2}$ (b) $-\frac{1}{2t^3}$ (c) $\frac{1}{2t^3}$
- (d) $\frac{1}{t^2}$

95. The derivative of x^6 w.r.t. x^3 is

- (a) $6x^3$
- (b) $3x^2$
- (c) $2x^3$
- (d) x^{3}

 $_{\setminus}$ x^6 ਦਾ ਡੈਰੀਵੇਟਿਵ w.r.t. x^3 ਹੈ

- (a) $6x^3$
- (b) $3x^2$ (c) $2x^3$
- (d) x^3

Rolle's theorem is applicable to the function $f(x) = 3^{\sin x}$ in

- any closed interval
- (b) $[o, \pi]$

(c) $\left[0,\frac{\pi}{2}\right]$

(d) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

Rolle ਦਾ ਸੂਤਰ ਫਲਨ $f(x) = 3^{\sin x}$ ਉਪੱਰ ਲਾਗੂ ਹੁੰਦਾ ਹੈ

- ਕੋਈ ਵੀ ਨੇੜਲੇ ਅੰਤਰਾਲ
- (b) $[o, \pi]$

 $\left[0,\frac{\pi}{2}\right]$

(d) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

97.	The (a)	function $f(x) =$ continuous in [0]	~		(b)	uniformly cont	inuous	in [0. 1	11	, Ji	
	(c)		•		(d)	continuous but r		-	-	[0, 1]	
	ਫਲਨ	$f(x) = \frac{1}{x} \hat{\mathbb{J}}$						·			
	(a)	[0, 1] ਵਿਚ ਨਿਰੰਤਰ	₹ .		(b)	[0, 1] ਵਿਚ ਇੱਕਾ	ਜਾਰ ਨਿਰੰ	ਤਰ			
	(c)	[0,1] ਵਿਚ ਅਨਿਰੰਤ	उत्ते -		(d)	[0, 1] ਵਿਚ ਨਿਰੰਤ	ਤਰ ਪਰੰ <u>ਤੂ</u>	ਇਕਸਾ	ਰ		
98.	The	tangent to the cur	ve x^2	= 2y at the	point	$(1,\frac{1}{2})$ makes with	th <i>x-</i> ax:	is an an	gle of		
	(a)	0°			(c)		(d)				
	ਬਿੰਦੂ $\left(1,\frac{1}{2}\right)$ 'ਤੇ ਵਕਰ $x^2=2y$ ਦੀ ਸਪਰਸ਼ ਰੇਖਾ x -axis ਨਾ										
	(a)	0°	(b)	45°	(c)	30°	(d)	60°			
99 .	Min	imum value of sir	x for	$r - \frac{\pi}{2} \le x$	$\leq \frac{\pi}{1}$ is	S .					
				_				1			
	(a)	0	(b)	1	(c)	-1	(d)	$-\frac{1}{2}$			
	$-\frac{\pi}{2}$	$\leq x \leq \frac{\pi}{2}$ ਲਈ sin	1 <i>x</i> ਂ ਦਾ	ਨਿਊਨਤਮ ਮੁੱਲ	5 ਹੈ						
	(a)	0	(b)	1	(c)	-1	(d)	$-\frac{1}{2}$			
100	A	41	-11		4 1		\4 1 \ 1 \ \4	2 The 4	i	ad ta	
100.		one thrown vertice h the maximum h				equation s – oc	n – 10t	. THE C	inie require	טו נט	
	(a)	2	(b)		(c)	2.5	(d)	3.5			
		ਉਪੱਰ ਵੱਲ ਨੂੰ ਸੁੱਟਿਅ ਈ 'ਤੇ ਪਹੁੰਚਣ ਲਈ ਸ					ਰਨ ਕਰਾ	ਦਾ ਹੈ। ੀ	ਇਸ ਨੂੰ ਅਧਿ -	ਕਤਮ	
	(a)		. (b)			2.5	(d)	3.5			
101.		rate of change of	the vo	olume of a sp	ohere	w.r.t. its surface	area w	hen the	radius is 2	cm,	
	is (a)	1	(h)	2	(c)	3	(d)	4			
	ਇੱਕ	ਗੋਲੇ ਦੇ ਸਤਹਿ ਦੇ ਖੇਵ							ਏਂ ਇਸ ਦਾ ਅ	ावप-	
		ਸ 2cm ਹੈ :						,			
	(a)	1	(b)	2	(c)	3	(d)	4			
C					21				Paper-II (M	aths)	

102	The function $f(r) =$	$\cos x - 2px$ is monotonically	decreasing for
IUZ.	THE IUDCUOU / (X/ —	-105 x - 40x = 101101101011101110111	decreasing for

(a)
$$p \leq \frac{1}{2}$$

(b)
$$p \ge -\frac{1}{2}$$
 (c)

(d)
$$p \ge 2$$

(a) $p \le \frac{1}{2}$ (b) $p \ge -\frac{1}{2}$ (c) $p \le 2$ ਫਲਨ $f(x) = \cos x - 2px$ ਇਕਹਿਰੇ ਰੂਪ ਵਿਚ ਘਟ ਰਿਹਾ ਹੈ, ਲਈ

(a)
$$p \leq \frac{1}{2}$$

(a)
$$p \le \frac{1}{2}$$
 (b) $p \ge -\frac{1}{2}$ (c) $p \le 2$

$$p \leq 2$$

(d)
$$p \ge 2$$

103. If $\lim_{x\to o} \frac{\sin px}{\tan 3x} = 4$ then the value of p is

$$(c) = 12$$

ਜੇਕਰ $\lim_{x\to o} \frac{\sin px}{\tan 3x} = 4$ ਹੈ ਤਾਂ p ਦਾ ਮੁੱਲ ਹੈ

104. $\int \frac{1}{x \log x} dx$ is equal to

(a)
$$\log x$$

(b)
$$\log[\log x]$$
 (c) $\log \frac{1}{x}$

(d)
$$\log[\log(\log x)]$$

$$\int \frac{1}{x \log x} dx$$
 ਬਰਾਬਰ ਹੈ :

(a)
$$\log x$$

(a)
$$\log x$$
 (b) $\log[\log x]$ (c) $\log \frac{1}{x}$

(d)
$$\log[\log(\log x)]$$

105.
$$\int_{0}^{2} \cos x \, dx \text{ is equal to}$$

$$-\frac{\pi}{2}$$

(b) 1 (c)
$$-1$$

$$\int_{-\infty}^{\frac{\pi}{2}} \cos x \, \mathrm{d}x \, \mathrm{ਬਰਾਬਰ} \, \mathrm{d}$$

$$-\frac{7}{2}$$

(b) 1 (c)
$$-1$$

106.
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right)$$
 is equal to

(d)
$$\log\left(\frac{1}{2}\right)$$

$$\lim_{n\to\infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots\ldots+\frac{1}{2n}\right)$$
 ਬੰਗਾਬਰ ਹੈ

(d)
$$\log\left(\frac{1}{2}\right)$$

107. The area of the curve
$$x^2 + y^2 = 2ax$$
 is

(a)
$$\pi a^2$$

(a)
$$\pi a^2$$
 (b) $2 \pi a^2$ (c) $4 \pi a^2$

(d)
$$\frac{1}{2}\pi a^2$$

ਵਕਰ
$$x^2 + y^2 = 2ax$$
 ਦਾ ਖੇਤਰ ਹੈ :

(a)
$$\pi a^2$$

(b)
$$2 \pi a^2$$
 (c) $4 \pi a^2$

(d)
$$\frac{1}{2}\pi a^2$$

108.	For 1	or Riemann integrability, condition of continuity is									
	(a)	necessary		(b)	sufficient						
	(c)	necessary and sufficient		(d)	neither necessary nor sufficient						

Riemann integrability ਲਈ ਨਿਰੰਤਰਤਾ ਦੀ ਸ਼ਰਤ ਹੈ

ਜ਼ਰੂਰੀ (a)

(b) ਕਾਫੀ

(c) ਜ਼ਰਰੀ ਅਤੇ ਕਾਫੀ

(d) ਨਾ ਜ਼ਰੂਰੀ ਨਾ ਹੀ ਕਾਫੀ

109. $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ is convergent when

- (a) m > 0
- (b) n > 0
- (c) m > 0, n > 0 (d) m > 1, n > 1

 $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ ਕੇਂਦਰਮੁਖੀ ਹੈ ਜਦੋਂ

- (b) n > 0
- (c) m > 0, n > 0
- (d) m > 1, n > 1

110. If $\int_0^\infty |f(x)| dx$ is convergent then the integral $\int_0^\infty f(x) dx$ is

- (a) conditionally convergent
- (b) uniformly convergent
- absolutely convergent
- (d) divergent

ਜੇਕਰ $\int_0^\infty |f(x)| \ dx$ ਕੇਰਦਮੁਖੀ ਹੈ ਤਾਂ integral $\int_0^\infty f(x) \ dx$ ਹੈ

(a) ਸ਼ਰਤੀਆ ਕੇ ਰਦਮਖੀ

(b) ਇਕਸਾਰ ਕੇ ਰਦਮਖੀ

(c) ਨਿਰਪੇਖ ਕੇਂਰਦਮਖੀ

ਭਿੰਨ ਦਿਸ਼ਾਵੀ (d)

111. Choose the incorrect statement:

- Every countable set is Lebesgue measurable. (a)
- A function of bounded variation is always continuous. (b)
- (c) Every continuous function is Lebesgue measurable.
- Every Riemann integrable function is Lebesgue integrable.

ਗ਼ਲਤ ਕਥਨ ਚਣੋ :

- ਹਰੇਲ ਗਿਣਨਯੋਗ ਸੈੱਟ Lebesgue ਮਾਪਣਯੋਗ ਹੈ (a)
- ਗਠਿਤ ਬਦਲਾਵ ਦਾ ਇਕ ਫਲਨ ਹਮੇਸ਼ਾ ਨਿਰੰਤਰ ਹੁੰਦਾ ਹੈ **(b)**
- ਹਰ ਨਿਰੰਤਰ ਫਲਨ Lebesgue ਮਾਪਣਯੋਗ ਹੈ (c)
- ਹਰ Riemann integrable ਫਲਨ Lebesgue ਮਾਪਣਯੋਗ ਹੈ (d)

	(b)	Every metric space is Hausdorff.								
	(c)	The real line (with usual metric) is compact.								
	(d)	The real line (with usual metric) is connected.								
	ਹੇਠ ਿ	ਲਿਖਿਆਂ ਵਿਚੋਂ ਕਿਹੜਾ ਕਥਨ ਗਲਤ ਹੈ								
	(a)	ਹਰ ਦਸ਼ਮਿਕ ਵਿਸਤਾਰ ਦੀ ਸੰਪੂਰਨਤਾ ਹੈ								
	(b)	ਹਰ ਦਸ਼ਮਿਕ ਖੇਤਰ Hausdorff ਹੈ		: · ·						
	(c)	ਅਸਲ ਰੇਖਾ (ਆਮ ਦਸ਼ਮਿਕ ਨਾਲ) ਸੰਖਿਪਤ ਹੈ								
	(d)	ਅਸਲ ਰੇਖਾ (ਆਮ ਦਸ਼ਮਿਕ ਨਾਲ) ਜੁੜੀ ਹੋਈ ਹੈ ।		-						
•										
114.	Cho	ose the correct statement:								
	(a)	Every normed linear space is connected.								
	(b)	Every finite dimensional normed linear space is compact.								
	(c) Every metric space is a normed linear space.									
	(d) Monotonic functions have discontinuity of the second kind.									
	ਸਹੀ	ਕਥਨ ਚੁਣੋ								
	(a)	ਹਰ ਸਧਾਰਨ ਰੇਖਾਬੱਧ ਵਿਸਤਾਰ ਆਪਸ ਵਿਚ ਸੰਬੰਧਿਤ ਹੈ								
	(b)	ਹਰ ਸੀਮਤ ਆਯਾਮੀ ਰੇਖਾਬੱਧ ਖਲਾਅ ਸੰਖਿਪਤ ਹੈ								
	(c)	ਹਰ ਦਸ਼ਮਿਕ ਵਿਸਤਾਰ ਅਸੂਲਨ ਰੇਖਾਬੱਧ ਹੈ								
	(d)	ਇਕਸਾਰ ਫਲਨ ਦੂਸਰੀ ਕਿਸਮ ਦੀ ਅਨਿਰੰਤਰਤਾ ਰੱਖਦੇ ਹਨ ।								
115.	If	$\vec{a} \times \vec{b} = \vec{a} \vec{b} $ then angle between \vec{a} and \vec{b} is								
	(a)	0° (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$	(d) _{-, 1}	rt						
	ਜੇ	$ec{a} imesec{b}ert=ertec{a}ertertec{b}ert$ ਫਿਰ $ec{a}$ ਅਤੇ $ec{b}$ ਦੇ ਦਰਮਿਅਨ ਕੋਣ ਹੈ :								
	(a)	0° (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$	(d) 1	π.						
Paper	r-II (M	Maths) 24								
			,							

112. The function f(x,y) = |x| + |y| is

ਫਲਨ f(x,y) = |x| + |y| ਹੈ ਉਤਪਤੀ 'ਤੇ ਅਨਿਰੰਤਰ

(a) (b)

(c)

(a)

discontinuous at the origin.

differentiable at the origin.

ਉਤਪਤੀ 'ਤੇ ਨਿਰੰਤਰ ਅਤੇ ਨਿਖੜੇਣਸ਼ੀਲ

113. Which one of the following statements is incorrect? Every metric space has a completion.

continuous as well as differentiable at the origin.

ਉਤਪਤੀ 'ਤੇ ਨਿਖੜੇਣਸ਼ੀਲ

ਉਤਪਤੀ 'ਤੇ ਨਿਰੰਤਰ ਪਰੰਤੂ ਨਿਖੜੇਣਸ਼ੀਲ ਨਹੀਂ

(b)

(d)

continuous but not differentiable at the origin.

110.		b, c are unit vector								$\vec{c} + \vec{c}$. a is
	(a)	$\frac{2}{3}$	(b)	$-\frac{2}{3}$	(c)	$\frac{3}{2}$		(d)	$-\frac{3}{2}$		
•	ਜੇ \vec{a}	, $ec{b}$, $ec{c}$ ਇਕਾਈ ਵੈਕਟਰ								:	
	(a)	_				3 2					
117.		area of the $\vec{j} - 2\vec{k}$ and $\vec{i} - \vec{j}$			whose	diagonals	are	give	n by	the	vectors
	(a)	$10\sqrt{3}$	(b)	5√3	(c)	3		(d)	5		
	ਸਮਾਂਤ ਗਏ ਵ	ਤਰ <mark>ਚਰੁਰਭ</mark> ੁਜ ਦਾ ਖੇਤਰ ਹਨ	ਫਲ ਹੈ	ਜਿਸ ਦੇ ਵਿਰ	ਰਨ 37	$+\vec{j}-2\vec{k}$ ਅਤੇ	3 ī−	3 <i>j</i> +	4 <i>k</i> ਵੈਕਟ	ැਰਾਂ ਦੁਅ	ਮਾਰਾ ਦਿੱਤੇ
	(a)	10√3	(b)	5√3	(c)	3	-	(d)	5		
118.	The	value of $\vec{a} \times (\vec{b})$	× c) +	$-\vec{b} \times (\vec{c} \times$	\vec{a}) + \vec{c}	$\vec{c} \times (\vec{a} \times \vec{b})$ is	5				
		$2[\vec{a}\vec{b}\vec{c}]$						(d)	$3[\vec{a}\vec{b}]$	đ]	·
	ά×	$(\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c}$	$\times \vec{a}$) -	$+ \vec{c} \times (\vec{a})$	ee ec b) ਦਾ	`ਮੁੱਲ ਹੈ					
	(a)	$2[\vec{a}\ \vec{b}\ \vec{c}]$	(b)	0	(c)	$[\vec{a} \vec{b} \vec{c}]$	I	(d)	$3[\vec{a}\vec{b}]$	<i>c</i>]	
119.		dimension of the	e vecte	or space I	R of all	l real numbe	ers. ove	er th	e field	Q of	rational
		0 ਮੋਯ ਸੰਖਿਆਵਾਂ ਦੇ ਖੇਤਰ				2 ਦੇ ਵੈਕਟਰ ਵਿਸ਼		(d) ਦੇ ਆ	infinite ਯਾਮ ਹਨ		
	(a)	0	(b)	1	(c)	2	((d) __	ਅਸੀਮ	÷	
120.	If A	is a square matrix	such 1	that $A^2 = A$	A then /	A =					
	(a)	0 or 1	(b)	0	(c)	1	((d)	-1		
		ਇੱਕ ਵਰਗਾਕਾਰ ਮੈਟੀ									
	(a)	0 ਜਾਂ1	(b)	0	(c)	1	((d)	-1		
121.	Cho	ose the correct sta	temen	t:							
	(a)	Every square ma									*
	(b)	The product of t								, •	
	(c)	If a matrix A is s Rank of a non-ze	-			ew symmetric	tnen .	A 1S	a zero n	iaurix.	
	(d) प्रती :	- Kank of a fiori-20 ਕਥਨ ਚੁਣੋ	cio ilia	ILLIX CALL OF	c zelo.						
	(a)	ਕਰਨ ਭੂਟ ਹਰ ਵਰਗਾਕਾਰ ਮੈਟੀ	ਰਕਸ ਪ	ਲਟਾਉਣ ਯੋਰ	ਗ਼ ਹੈ						
	(b)	ਦੋ ਗ਼ੈਰ-ਸਿਫ਼ਰ ਮੈਟੀ				ਰ-ਸਿਫ਼ਰ ਮੈਟਰਿ	ਕਸ ਹੁੰਚ	ਤਾ ਹੈ	l		
	(c)	ਜੇਕਰ ਇੱਕ ਮੈਟਰਿਕ								ਫ਼ਰ ਮੈਟ	ਟਰਿਕਸ ਹੈ
	(d)	ਇੱਕ ਗੈਰ-ਸਿਫ਼ਰ ਮੈ	ਟਰਿਕਸ	ਦਾ ਦਰਜਾ ਿ	ਸਫ਼ਰ ਹੋ	ਸਕਦਾ ਹੈ ।					
C					25				P	aper-Il	(Maths)

A Company of the Company

Pap	er-II (N	Aaths)			26			,	C
	(a)	0	(b)	1	(c)	2	(d)	4	•
	(a) ਚੱਕਰ ਗੁਜ਼ਰ	0 ਭ x² + y² – ਭਦੀਆਂ ਹਨ, ਹੈ	(b) $8x - 6y + 9 = 0$		(c) ਸ਼ ਕਰ		(d) ਆਂਲਕੀਰਾਂਦੀ ਰਿ	4 ਗਣਤੀ, ਜੋ	ਬਿੰਦੂ (3, –2) ਤੋਂ
126	(3, -	-2) is							ough the point
	(a)	3	(b)	1	(c)	2	(d)	7	-
	ਚੱਕਰ	$3x^2 + y^2 +$	4x - 7y + 12	= 0 ਇੱਕ int	ercept	: ਨੂੰ Y-axis	ਉਂਪਰ ਕੱਟਦਾ ਹੈ	, ਬਰਾਬਰ	ਹੈ :
	(a)		(b)				(d)	7	
125	. The	circle x^2 +	$y^2 + 4x - 7y$	+ 12 = 0 cu	its an :	intercept o	on Y-axis equ	al to	
		y = 5		y + 5 = 0				<i>x</i> = 3	
	X-a	xis ਦੇ ਸਮਾਨਾਂ					ਾਲੀ ਰੇਖਾ ਦੀ ਸਮ	ੀਕਰਨ ਹੈ:	
	(a)	y = 5	•	y + 5 = 0				x = 3	
124	. The	equation o	f the line par	allel to X-a	cis and	l bisecting	the join of (1	,4) and	(–2, 6) is
	(a)	<u>6</u> 5	(b)	3 10	(c)	3 11	(d)	5	
	ਰੇਖਾ	₹ 3x + 4y =	= 9 ਅਤੇ 6x + 8	8y = 15 ਵਿਚ	ਅੰਤਰ	ਹੈ			
		3	(b)	10			(d)	5	
123	. The	distance be	tween the lir	$\cos 3x + 4y$	= 9 an	d 6x + 8y	= 15 is		
	(u) ·	ICO IOMIO	55 40°5AQ	eoora ge		o orgon o	() 1/100 (() 1		
	(d)						ਲ ਸਿਫ਼ਰ ਹਨ ।		
	(c)		ı ਮੈਟਰਿਕਸ ਦੇ			স			
	(b)		ormal ਸੈੱਟ ਰੇਪ					-	
	(a)	•	ਮ ਗੁਣਨਫਲ ਵਿਸ	ਤਾਰ ਸ਼ਹਾਰਨ	<u>ਜੇਖਾਸ਼ੱ</u> ।	ਹ ਵਿਸਤਾਰ	ਹੈ।		
	HJI	ପ୍ୟୁ ନୁଦ୍ର 🗀					•		

122. Choose the correct statement:

(þ)

(c)

Every inner product space is a normed linear space.

The eigen values of a Hermitian matrix are all real.

All the eigen values of a positive definite quadratic form are zeroes.

Every orthonormal set is linearly independent.

127.	The	straight line $x +$	<i>y</i> =	l touches th	e para	$bola y = x - x^2$	if <i>l</i> is	equal to
	(a)			1			(d)	
	ਸਿੱਧੀ	ਰੇਖਾ $x + y = l$				ਸਪਰਸ਼ ਕਰਦੀ ਹੈ ਜੇਕ	ਰ <i>।</i> ਬ	ਰਾਬਰ ਹੋਵੇ
	(a)	0		1:			(q)·	
128.	Sum	of the focal dista	nce ș o	f an ellipse	$\frac{x^2}{4} + \frac{3}{4}$	$\frac{y^2}{5} = 1 \text{ is}$		
	(a)			5	-	_	(d)	10
	ਇੱਕ	ਅੰਡਾਕਾਰ $\frac{x^2}{4} + \frac{y^2}{5}$ =	= 1 ਦੀ	ਆਂ ਮੁੱਖ ਦੂਰੀਅ	ਮਾਂ ਦਾ ਜੋ	ਜੋੜ ਹੈ		
	(a)	+ 3		5			(d)	10
			:					
129.	The	eccentricity of the	conic	$x^2 - 2x - 4y$	$y^2 = 0$	is		
	(a)	$\frac{3}{2}$	(b)	$\frac{\sqrt{5}}{4}$	(c)	$\frac{\sqrt{5}}{2}$	(d)	1 8
	ਕੋਣਾ	ਕਾਰ $x^2 - 2x - 4y^2$	= 0 ਦੰ	ੀ ਕੇਂਦਰੀਅਤਾ	ਹੈ	. -		
	(a)	3	, (b)	$\sqrt{5}$	(c)	√5	(d)	1
	(-)	2	(-)	4	(-)	2	(-)	8
130.	The	distance of the po	int (3,	4, 5) from y	/-axis	is		
	(a)	3	(b)	5	(c)	$\sqrt{34}$	(d)	4
	ਬਿੰਦੂ	(3, 4, 5) ਦੀ y-ਅਕਸ਼	ਾਂਸ਼ ਤੋਂ	ਦੂਰੀ ਹੈ				
	(a)	3	(b)	5	(c)	$\sqrt{34}$	(d)	4
	•				-			•
131.	The	angle between the		=	and y	=-1, z=0 is		
	(a)		(b)		(c)	60°	(d)	90°
		$\dot{x} = 1, y = 2$ ਅਤੇ		•				
	(a)	0°	(b)	30°	(c)	60°	(d)	90°
122	A		malea	o on onala	of 60	10 with each of V	and	Z-axis, inclines with
134.		raight fille which is at an angle	make	s all aligic	01 00	with cach of i	and	Z-axis, momios with
	(a)	$\frac{\pi}{4}$	(b)	$\frac{\pi}{6}$	(c)	$\frac{\pi}{2}$	(d)	$\frac{3\pi}{4}$
	ਇੱਕ	4						K-axis ਨਾਲ ਇਸ ਕੋਣ ਤੇ
		ਹੈ।						
	(a)	$\frac{\pi}{4}$	(b)	$\frac{\pi}{6}$	(c)	$\frac{\pi}{2}$	(d)	$\frac{3\pi}{4}$
•		•	-	1	27			Paper-II (Maths)

133.	The	The angle between the planes $2x - y + z = 6$ and $x + y + 2z = 7$ is								
	(a)	$\frac{2\pi}{3}$	(b)	$\frac{\pi}{2}$	(c)	$\frac{\pi}{4}$	(d)	$\frac{\pi}{3}$		
	ਤਲ 2	x – y + z = 6 ਅਤੇ	x + y	- + 2z = 7 ਦਰੀ	ਮਿਆਨ	`ਕੋਣ ਹੈ :				
	(a)	$\frac{2\pi}{3}$	(b)	$\frac{\pi}{2}$	(c)	$\frac{\pi}{4}$	(d)	$\frac{\pi}{3}$		
134.		projection of the ts (-1, 2, 4) and (1			oints	(3, 4, 5) and (4,	6, 3)	on the line joining the		
	(a)	4/3	(b)	2 3	(c)	$\frac{1}{3}$	(d)	1/2		
		2, 4) ਅਤੇ (1, 0 , 5 ਵਾਧਰਾ ਹੈ :	5) ਬਿੰਦੂ	ਆ ਨੂੰ ਜੋੜਦੀ	ਰੇਖਾ 🤅	ਤੁਪੱਰ (3, 4, 5) ਅਤੇ	(4, 6,	3) ਬਿੰਦੂਆਂ ਨੂੰ ਜੋੜਨ ਵਾਲੀ		
	(a)	$\frac{4}{3}$	(b)	<u>2</u> 3	(c)	$\frac{1}{3}$	(d)	1/2		
135.	The	principal value of	the a	mplitude of	1 + i i	is	•			
	(a)	π		$\frac{\pi}{4}$	(c)		(d)	$\frac{\pi}{6}$		
		ਦੇ amplitude ਦਾ		•		4		6		
•	(a)	π		$\frac{\pi}{4}$	(c)	$\frac{3\pi}{4}$	(d)	$\frac{\pi}{6}$		
136.	The	complex number	z = x	+ iv satisfvir	ng z⊣	+ 1 = 1 lie on	•			
10,00	(a)	X-axis		Y-axis	(c)	circle	(d)	ellipsoid		
	z +	1 =1 ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ	ਤਨ ਵਾਲ	ਨਾ ਜਟਿਲ ਅੰਕ	z = x	+ iy ਆਉਂਦਾ ਹੈ		•		
	(a)	X-axis 'ਤੇ	(b)	Y-axis 'ਤੇ	(c)	ਚੱਕਰ 'ਤੇ	(d)	ਅੰਡਾਕਾਰ ਅਕਾਰ 'ਤੇ		
137.		inequality $ z-4 $					(4)	P ₂ (2) < 2		
•	` '	Re(z) > 0 4 < z – 2 ਦੀ ਅਸ		Re(z) < 0 ਖੇਤਰ ਪੇਸ਼ ਕਰ		Re(z) > 3	(a)	Re(z) < 2		
		Re(z) > 0				Re(z) > 3	(d)	Re(z) < 2		
	` ,		` '		()	• • •				
138.	A va	alue of $\sqrt{i} + \sqrt{-i}$	is							
	(a)	0	. (b)	$\sqrt{2}$	(c)	i	(d)	- <i>i</i>		
	\sqrt{i} +	- <i>√−i</i> ਦਾਮੁਲ ਹੈ:								
	(a)	0	(b)	$\sqrt{2}$	(c)	i	(d)	-i		

28

 \mathbf{C}

Paper-II (Maths)

									•	
		·								
139.	If z =	= 1 + i, then th	e multip	licative in	verse of	z^2 is		: .	•	
	(a)	1-i	(b)	$\frac{i}{2}$	(c)	$-\frac{i}{2}$		(d)	2 <i>i</i>	
	ਜੇਕਰ	z = 1 + i ਹੈ ਤਾਂ	ਫਿਰ z^2	ਦਾ ਗੁ ਣ ਕ ਉੱ	ਲਟਾ ਹੈ	-				
	(a)	1-i	(b)	$\frac{i}{2}$.	(c)	$-\frac{l}{2}$		(d)	2 <i>i</i>	
140.	If on	e root of equat	tion ix²	- 2(i +	1)x + (2	(2-i) =	= 0 is 2 –	i, then	the other root is	
	(a)			2 + i			•			
	ਸਮੀਕ	ਰਨ $ix^2 - 2(i$	+ 1)x +	-(2-i)	=0 ਦਾ1	ਇੱਕ ਮੂਲ	2 - i ਹੈ	ਤਾਂ ਦੂਸਰ	ਾਕੀਹੈ ?	
	(a)	<i>−i</i>	(b)	2+i	(c)	i		(d)	2 - i	
141.	The	value of cos 5	3° cos 3	7° — sin 5	3° sin 3	7° is				
	(a)	1	(b)	$\frac{1}{\sqrt{2}}$	(c)	0		(d)	$\sqrt{2}$	
	cos 5	3° cos 37° –		V	ਾ ਮੁੱਲ ਹੈ					
	(a)			$\frac{1}{\sqrt{2}}$	(c)	0		(d)	$\sqrt{2}$	٠.
142.	If tar	$a A = \frac{1}{2}$ and ta	$n B = \frac{1}{2},$	then the v	alue of A	A + B i	s			
	(a)	$\frac{\pi}{6}$	(b)	π	(c)	0		(d)	$\frac{\pi}{4}$	
	ਜੇਕਰ	$\tan A = \frac{1}{2}$ ਅਤੇ	tan B =	= <mark>ਜ</mark> ਼ੇ ਤਾਂ A ·	+ B ਦਾ ਮੁੱ	ਲਹੈ:				
	(a)	$\frac{\pi}{6}$	(b)	π	(c)	0		(d)	$\frac{\pi}{4}$	
143.	If sir	$\alpha = \sin \beta$ and	ıd cos α	$=\cos \beta$,	then					· ·
	(a)	$\alpha = \beta$	•	ļ	(b)	$\alpha + i$	$\beta = 0$			
	(c)	$\alpha = \pm \beta$			(d)	$\alpha = 2$	$2n\pi + \beta$,	where	n is any integer	
	ਜੇਕਰ	$\sin \alpha = \sin \beta$	ਅਤੇ cos	$\alpha = \cos$	β ਹੈ ਤਾਂ					·. ·
	(a)	$\alpha = \beta$		•		α+		-		
	(c)	$\alpha = \pm \beta$			(d)	$\alpha = 3$	$2n\pi + \beta$,	निष्ये n	ਕੋਈ ਅੱਖਰ ਹੈ ।	
144.	Whi	ch one of the f	ollowing	functions	s is analy	rtic?				
	(a)	sin z	(b)		(c)	$ z ^2$		(d)	xy + iy	
	ਹੇਠ ਰਿ	ਲੇਖਿਆ ਵਿਚੋਂ ਕਿ	ਹੜਾ ਫਲਨ	ਵਿਸ਼ਲੇਸ਼ਣਾ	ਤਮਿਕ ਹੈ	?			•	
	(a)	sin z	(b)	Z	(c)	$ z ^2$		(d)	xy + iy	
C		·			29				Paper-II (Maths)
						•				

Paper	r -II (M	laths)			30				C
	(a) .	20	(b)	36	(c)	30	(d)	9 .	
		ਅੱਖਰ ਟਾਂਕ ਜਗ੍ਹਾਂ ਤੇ				S CH IMO RIGE	40.0	E MME UD AMUS	סיח כ
	. ,	ਂ 20 BILE ਸ਼ਬਦ ਵਿਚ ਜਿੰ	` '		• •		• •		रे जाने
		20	(b)	36	(c)	30	(d)	9 .	
150.		number of words			ade o	ut of the letters	of the	word MOBILE	when
	(a)	210	(b)	10	(c)	20	(d)	10 ²	
	10 ਸਹੀ–ਗ਼ਲਤ ਪ੍ਰਸ਼ਨ ਹਨ । ਉਹਨਾਂ ਦਾ ਉਤੱਰ ਜਿੰਨੇ ਢੰਗਾਂ ਨਾਲ ਦਿੱਤਾ ਜਾ ਸਕਦਾ ਹੈ ਉਹ ਹਨ								
	(a)	2 ¹⁰	` '	10 • — ~~~ &	(c)	. <u>20</u>		10 ²	
149.		re are 10 true-false	_				,	_	is
	(a)	2 ⁿ		2 ⁿ + 1				2 ⁿ⁻¹	
	• •	ੁ ਕੁੱਲ n ਵਸਤੂਆਂ ਦੇ ਇੱ	` '				• •		
	(a)	2 ⁿ		$2^{n} + 1$		the state of the s		2 ⁿ⁻¹	
148.	The	total number of co	mbin	ation of n di	ifferen	at things taken 1,	2, 3,	, n at a time is	
	(c)	Schwarz lemma			(d)	Open mapping	_	m	
	(a)	Cauchy theorem			(b)	Liouville's theo	rem		
		ਫਲਨ ਜੋ ਵਿਸ਼ਲੇਸ਼ਣਾਤ ਖਵਾਉਂਦਾ ਹੈ	iiha d	NA A40 +	110C (400 0'0 HIJIOS	ប, ដូប៊ូ	01 20 2 10020	4CE'
	(c)	Schwarz lemma)	(d)	Open mapping t			भारत्या
	(a)	Cauchy theorem			` ,	Liouville's theo	_		
147.	cons	nction which is a stant is		c and boun				lane must reduce	to a
	(a)	0	(b)	. 1	(c)	2	(d)	3	
) ਉਪੱਰ $\frac{\cos z}{z}$ ਹੈ :	<i>a</i> .	•		•	(4)	2	
	(a)		(b)	1	(c)	2	(ġ)	3	
146.		due of $\frac{\cos z}{z}$ at $z = 0$		•	(~)	2	(4)	2	
1.4.	TO - *	ccosz _, _	n:-						
	(a)	1	(b)	0	(c)	2πί	(d)	2π	
	ਜੇਕਰ	C contour $ z = 1$	ਹ ਤਾਂ ∫ੂੰ	$\cos z dz$	ਦਾ ਮੁੱਲ	ै ਹੈ :			
	(a)	1	(b)	0 .	(c)	2πί	(d)	2π	
145.	If C	is the contour $ z =$	1, the	n the value	of \int_C	$\cos z dz$ is		٠.,	

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK