Paper – II (Maths) | Maximum Marks: 150 | | Time: 2:30 pm to 5:00 pm | |-----------------------|------------------------------|--------------------------| | | , | | | Name : | ·· | | | | | | | _ | (Signature of the Candidate) | | | Roll No. (In Figures) | | | | Roll No. (In Words) | | | | 1 | | | #### : INSTRUCTIONS: - 1. All questions in the Test are multiple choice questions. - 2. Each question carries one mark, with four alternatives out of which one answer is correct. - 3. There will be no negative marking. - 4. Use only BLUE/BLACK Ball Point Pen to darken the appropriate oval. - 5. Mark your response only at the appropriate space against the number corresponding to the question while answering on the OMR Response Sheet. - Marking more than one response shall be treated as wrong response. - 7. Mark your response by completely darkening the relevant oval. The Mark should be dark and the oval should be completely filled. - 8. Use of calculator, Mobile is strictly prohibited and use of these shall lead to disqualification. - The candidate MUST remove the last Carbon copy (Candidate's copy) of OMR after completion of Test. - 10. The question paper will be both in English & Punjabi. In case of any doubt, English version will be taken as final. | 1. | The | mean and varian | ce of f | irst n natur | al num | ibers are respecti | vely | | |-------|--------------|--|----------------|------------------------|-------------------|--|-----------|--| | | (a) | $\frac{n+1}{2}$ and $\frac{n^2-1}{12}$ | (b) | $\frac{n^2-1}{12}$ and | $\frac{n+1}{2}$ (| (c) $\frac{n-1}{2}$ and $\frac{n^2+1}{12}$ | (d) | $\frac{n^2+1}{12}$ and $\frac{n-1}{2}$ | | | ਪਹਿਰ | ਲੀਆਂ n ਕੁਦਰਤੀ ਸੀਂ | ਖ਼ਿਆਵਾਂ | ਦੀ ਔਸਤ ਅੰ | ਤੇ ਭਿੰਨਵ | ਹਾ ਹੈ | | | | | (a) | $\frac{n+1}{2}$ and $\frac{n^2-1}{12}$ | (b) | $\frac{n^2-1}{12}$ and | $\frac{n+1}{2}$ (| c) $\frac{n-1}{2}$ and $\frac{n^2+1}{12}$ | (d) | $\frac{n^2+1}{12}$ and $\frac{n-1}{2}$ | | _ | | | | _ | | | | | | 2. | | sum of absolute | | | | | | • | | | | | | least | (c) | zero | (d) | none of these | | | ਮਾਧਾ | ਅਕਾ ਤੋਂ ਲਏ ਪੂਰਨ ਵਿ | | | | | | | | | (a) | ਅਧਿਕਤਮ | (b) | ਨਿਊਨਤਮ | (c) | ਸਿਫਰ | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀ | | 3. | If 1 | 0 is the mean o | of a se | et of 7 obs | servati | ons and 5 is th | ne mean | n of another set of 3 | | | | ervations then the | | | | | is | | | | (a) | | ` , | | (c) | | ` ' | 7.5 | | | ਜਕਰ
ਦੀ ਹਿ | ਾ7 ਕਥਨਾ ਦੇ ਇੱਕ ।
ਟਕੱਠਿਆਂ ਔਸਤ ਹੋਵੇਰ | ਜੈਂਟ ਦੀ
ਗ਼ੀ | ਅੰਸਤ 10 ਹੈ | ਅਤੇ 3 | ਕਥਨਾਂ ਦੇ ਇੱਕ ਹੋਰ | ਾ ਸੈੱਟ ਦੀ | ਔਸਤ 5 ਹੈ ਤਾਂ ਦੋਹਾਂ ਸੈੱਟਾਂ | | | (a) | 15 | (b) | 10 | (c) | 8.5 | (d) | 7.5 | | 4. | If th | e events S and T $P(S)$ is | have e | equal proba | biliti e s | s and are indepen | ndent w | $rith P(S \cap T) = p > 0$ | | - | (a) | \sqrt{p} | (b) | p^2 | (c) | p | (d) | none of these | | | ਜੇਕਰ
P(S) | ਈਵੈਂਟ S ਅਤੇ T | | | | | | 0 ਨਾਲ ਸੁਤੰਤਰ ਹਨ, ਫਿਰ | | | (a) | \sqrt{p} | (b) | p ² | (c) | p | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | 5. | In ca | se of tossing an o | rdinar | y die, the se | et of ev | vents {1,2,3,4,5,6 | 6} is | | | | (a) | exhaustive | | | (b) | mutually exclu | sive | | | | (c) | both (a) and (b) | | | (d) | neither (a) nor | (b) | ·. | | | ਇੱਕ 1 | ਸਧਾਰਨ ਪਾਸੇ ਨੂੰ ਸੁੱਟਰ | ਵੇਲੇ, | ਈਵੈਂਟ {1, | 2,3,4,5 | • | • | | | | (a) | ਵਿਸਤ੍ਰਿਤ | | | (b) | ਪਰਸਪਰ ਨਿਵੇਕਲੇ | | | | - | (c) | (a) ਅਤੇ (b) ਦੋਵੇ ਂ | | | . , | ਨਾ (a) ਅਤੇ ਨਾ (b) |) | | | Paper | r-II (Ma | aths) | | | 2 | (=) (=) | , | n | | 6. | single | e coin is flip
Is tail die B i | ped once. I | f it falls | head the | game star | ts with the thr | nd four white faces. A rowing of die A and i ce at any throw of any | f | |--------|-----------------|--|-------------------------------|----------------------|---------------------------------|------------------------|-------------------|--|----------| | | (a) | 1 2 | (b) | 1
3 | (c) | $\frac{1}{4}$ | (d) | none of these | | | | ਨੂੰ ਇੱਕ
ਜੇਕਰ | ਕ ਵਾਰ ਸੁੱਟਿਅ | ਾ ਜਾਂਦਾ ਹੈ।
ਾਉਂਦਾ ਹੈ ਤਾਂ | ਜੇਕਰ ਇ | ਸਤੇ ਹੈੱਡ ਅ | ਾਉਂਦਾ ਹੈ ਤ | ਾਂ ∧ ਪਾਸਾ ਸੁੱਟ∂ | ਚਿੱਟੇ ਪੱਖ ਹਨ. ਇੱਕ ਸਿੱਰੋ
ਣ ਨਾਲ ਖੇਡ ਸ਼ੁਰੂ ਹੁੰਦੀ ਹੈ
ਾਸੇ ਨੂੰ ਸੁੱਟਣ 'ਤੇ ਲਾਲ ਪੱਖ | , | | *
* | (a) | 1 2 | (b) | $\frac{1}{3}$ | (c) | 14 | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | | 7. | If P (| $A \cup B) = \frac{5}{6},$ | $P(A \cap B)$ | $=\frac{1}{3}$ and | $P(\overline{A}) = \frac{1}{2}$ | then eve | ents A and B a | are | | | | (a) | independen | nt | | (b) | mutually | exclusive | | | | | (c) | exhaustive | 1 | | (d) | | | | | | | ਜੇਕਰ | $P(A \cup B) =$ | $=\frac{5}{6}, P(A \cap A)$ | $3) = \frac{1}{3}a$ | | | ਈਵੈਂਟ A ਅਤੇ B | ਹਨ | | | | (a) | ਸੁਤੰਤਰ | | | | . ਪਰਸਪਰ ੀ | | | | | | (c) | ਵਿਸਤ੍ਰਿਤ | !
: | : | (d) | ਇਹਨਾਂ ਵਿੱ | ਚੋਂ ਕੋਈ ਨਹੀਂ | | * | | 8. | If (A | $(\cup B) = \frac{5}{6},$ | $P(A \cap B) =$ | $=\frac{1}{3}$, and | $P(\bar{A}) =$ | $\frac{1}{2}$ then P | (A/B) is equal | al to | | | | (a) | 1.00 | (b) | 0.25 | (c) | 0.75 | (d) | 0.50 | | | | ਜੇਕਰ | $(A \cup B) =$ | $\frac{5}{6}$, $P(A \cap B)$ | $)=\frac{1}{3},$ | and $P(\vec{A})$ | $=\frac{1}{2}$, ਫਿਰ | $P(^A/_B)$ ਬਰਾਣ | ਭਰ ਹੈ | | | | (a) | 1.00 | (b) | 0.25 | (c) | 0.75 | (d) | 0.50 | | | | | *. | | | 4 4 | - C-11in | a joint ndf: | | | | 9. | | | | | | | g joint pdf: | | | | | f(x) | $(y) = \begin{cases} c(2x) \\ 0 \end{cases}$ | ; + <i>y)</i> ; u:<
); | oth | erwise | | | | | | | | n the value o | | | | | • | | | | | (a) | 1 3 | (b) | 1
4 | (c) | 1
5 | (d) | none of these | | | | ਮੰਨ ਵ | ਲਉ <i>X</i> ਅਤੇ <i>Y</i> | ਹੇਠਾਂ ਦਿੱਤੀ j | oint pd | f ਵਾਲੇ ਦੋ ਰੈਂ | ਡਮ ਵੇਰੀਏੲ | ਸ਼ਲ ਹਨ
ਹਨ | | | | | f(x | $(y) = \begin{cases} c(2x) \\ 0 \end{cases}$ | (x + y); 0 < 0; | x < 1, oth | 0 < y < 2 erwise | 2 | | | | | | ਸਥਾ | ਈ ਅੰਕ <i>c</i> ਦਾ | ਮੁੱਲ ਹੈ: | | | | | | ۸. | | | (a) | $\frac{1}{3}$ | (b) | 1
4 | (c) | <u>1</u>
5 | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀ | П | | | | | | | 3 | | | Paper-II (Mat | hs | | D | | | | | 3 | | | | | If the joint pdf of random variables X and Y is given by 10. If the joint pdf of random variables X and Y is given by $$P(X = x, Y = y) = \begin{cases} \frac{x+y}{30}; & x = 0,1,2,3 \text{ and } y = 0,1,2 \\ 0; & \text{otherwise} \end{cases}$$ then $P(X + Y = 4)$ is $$(a) \frac{2}{5} \qquad (b) \frac{1}{6} \qquad (c) \frac{4}{15}$$ (a) $$\frac{2}{5}$$ (b) $$\frac{1}{6}$$ $$(c) \quad \frac{4}{15}$$ (d) none of these ਰੈਂਡਮ ਚਰਾਂ X ਅਤੇ Y ਦੀ joint pdf ਹੈ $$P(X = x, Y = y) = \begin{cases} \frac{x+y}{30}; & x = 0,1,2,3 \text{ and } y = 0,1,2 \\ 0; & \text{otherwise} \end{cases}$$ (a) $\frac{2}{5}$ (b) $\frac{1}{6}$ (c) $\frac{4}{15}$ (a) $$\frac{2}{5}$$ (b) $$\frac{1}{6}$$ (c) $$\frac{4}{15}$$ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ The function $\phi(t)$ is a characteristic function of a random variable if (a) $$\phi(0)=1$$ (b) $$\phi(t) = \phi(-t)$$ (c) $$\phi(t)$$ is continuous ਫਲਨ $\phi(t)$ ਇੱਕ ਬੇਤਰਤੀਬੀ ਚਰ ਦਾ ਵਿਸ਼ੇਸ਼ਕ ਫਲਨ ਹੈ ਜੇਕਰ (a) $$\phi(0)=1$$ (b) $$\phi(t) = \phi(-t)$$ (c) $$\phi(t)$$ ਨਿਰੰਤਰ ਹੈ A sequence of random variables $X_1, X_2, \dots, X_n, \dots$ is said to converge in probability to a constant A if for any $\epsilon > 0$, we have (a) $$\lim_{n\to\infty} P(|X_n-A|<\epsilon)=0$$ (b) $$\lim_{n\to\infty}P(|X_n-A|<\epsilon)=1$$ (c) $$\lim_{n\to\infty} P(X_n - A < \epsilon) = 0$$ (d) $$\lim_{n\to\infty} P(X_n - A < \epsilon) = 1$$ (a) $\lim_{n\to\infty}P(|X_n-A|<\epsilon)=0$ (b) $\lim_{n\to\infty}P(|X_n-A|<\epsilon)=1$ (c) $\lim_{n\to\infty}P(X_n-A<\epsilon)=0$ (d) $\lim_{n\to\infty}P(X_n-A<\epsilon)=1$ ਬੇਤਰਤੀਬ ਚਰਾਂ ਦੀ ਇੱਕ ਲੜੀ $X_1, X_2, \dots, X_n, \dots$ ਇੱਕ ਸਥਾਈ ਅੰਕ A ਲਈ probability ਵਿੱਚ ਕੇਂਦਰਤ ਹੁੰਦੀ ਕਹੀ ਜਾਵੇਗੀ ਜੇਕਰ ਕਿਸੇ ਵੀ $\epsilon > 0$, ਸਾਡੇ ਕੋਲ ਹੈ: (a) $$\lim_{n\to\infty}P(|X_n-A|<\epsilon)=0$$ (b) $$\lim_{n\to\infty}P(|X_n-A|<\epsilon)=1$$ (c) $$\lim_{n\to\infty} P(X_n - A < \epsilon) = 0$$ (b) $$\lim_{n\to\infty} P(|X_n - A| < \epsilon) = 1$$ (d) $\lim_{n\to\infty} P(X_n - A < \epsilon) = 1$ If X is a random variable with mean μ and variance σ^2 , then for any positive number k, the **13.** Chebychev's inequality is given by (a) $$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$ (b) $$P(|X - \mu| \ge k\sigma) \ge \frac{1}{k^2}$$ (c) $$P(|X - \mu| \le k\sigma) \le \frac{1}{k^2}$$ (c) $P(|X-\mu| \le k\sigma) \le \frac{1}{k^2}$ (d) none of these ਜੇਕਰ ਔਸਤ μ ਅਤੇ ਭਿੰਨਤਾ σ^2 X ਨਾਲ ਇੱਕ ਬੇਤਰਤੀਬ ਚਰ ਹੈ, ਤਾਂ ਫਿਰ ਕਿਸੇ ਵੀ ਧਨਾਤਮਕ ਅੰਕ k ਲਈ Chebychev's inequality ਦਿੱਤੀ ਗਈ ਹੈ: (a) $$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$ (b) $$P(|X - \mu| \ge k\sigma) \ge \frac{1}{k^2}$$ (c) $$P(|X - \mu| \le k\sigma) \le \frac{1}{k^2}$$ | 14. | | equence $\{X_n\}$ is satisfied $P[X_{n+1} = i_{n+1}/2]$ | | | | _ | | | | |-----|------------|---|------------------|------------------------------|-----------|------------------------|--------------------|--|---| | | (a)
(b) | $P[X_{n+1} - i_{n+1}]/2$ $P[X_{n+1} = i_{n+1}]/2$ | - | | | | | | | | | (c) | $P[X_{n+1} = i_{n+1}]$ | - | -,, | | | | | | | | (d) | None of these | - | ·,, | | - | | | | | | | ਲੜੀ $\{X_n\}$ Marko | | | | | | | | | | | $P[X_{n+1}=i_{n+1}/2$ | | | | | | | | | | | $P[X_{n+1}=i_{n+1}/$ | | | | | | | | | | (c)
(d) | $P[X_{n+1} = i_{n+1}/2]$ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਹ | - | $i_{0,}X_{1}=i_{1,}$ | **** | $X_n = l_n$ | $= P[X_n = i]$ | n] | | | 15. | The | coefficient of disp | ersion | of Poisson | distri | bution with | mean 4 is | | | | | (a) | | (b) | 7 | (c) | | (d) | 2 | | | | ਔਸਤ | ਾ 4 ਨਾਲ Poisson di | istribu | tion ਦਾ ਵਿਸ | ਥਾਪਣ | ਦਾ ਗੁਣਾਂਕ ਹੈ: | | | | | | (a) | 1 4 | (b) | 1
2 | (c) | 4 | (d) | 2 | | | 16. | | ectively | | | | | | rees of freedom are | ; | | | (a) | 2n and n | (b) | n^2 and \sqrt{n} | (c) | \sqrt{n} and n^2 | ² (d) | n and $2n$ | | | | | grees of freedom | | | | | | | | | | (a) | ' 2n ਅਤੇ n |
(b) | n^2 ਅਤੇ \sqrt{n} | (c) | √n ਅਤੇ n⁴ | (d) | n ਅਤ 2n | | | 17. | hand | d side of the point | x_2 is | 0.7, then we | have | | • | and x_1 is 0.6 and to left | | | | (a) | $x_1 > x_2$ | (b) | $x_1 < x_2$ | (c) | $x_1 = x_2$ | (d) | none of these
ਪਾਸੇ ਵੱਲ ਖੇਤਰ ਹੈ 0.7, ਤਾਂ | ÷ | | | ਸਾਡੇ | ਕੋਲ ਹੈ | | | | ÷ | | | | | | (a) | $x_1 > x_2$ | (b) | $x_1 < x_2$ | (c) | $x_1 = x_2$ | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | | 18. | | | | ed on a sam | ple x_1 | x_1, x_2, \dots, x_n | x_n , of the pa | arameter θ . Then T_n is | 3 | | | con: | sistent estimator of $P(T_n - \theta > \epsilon)$ | | $l\epsilon > 0$ | | | | <i>;</i> | | | | | $D(T - A) < \epsilon$ |) 0 | | | | ٠. | | | | | (c) | $\lim_{n\to\infty}P(T_n-\theta $ | > <i>ε</i>) | $= 0 \ \forall \epsilon > 0$ | 0 | | | | | | | (d) | $\lim_{n\to\infty}P(T_n-\theta$ | $ <\epsilon)$ | $= 0 \ \forall \epsilon > 0$ | 0 | - | | | | | | ਮੰਨ | ਲੳ T_n , x_1 , x_2 , | , x _n | , ਸੈਂਪਲ 'ਤੇ 🏻 | ਅਧਾਰ | ਤ ਪੈਰਾਮੀਟਰ (| <i>θ</i> ਦਾ ਇੱਕ ਨਿ | ਰਧਾਰਕ ਹੈ, ਫਿਰ $T_n, heta$ ਦ | Т | | | ਇੱਕ | ਸਥਿਰ ਨਿਰਧਾਰਕ ਹੈ | ਜੇਕਰ | | | | | | | | | (a) | $P(T_n - \theta > \epsilon)$ | | $\epsilon > 0$ | • | | • | . • | | | | (b) | $P(T_n - \theta < \epsilon$ |) = 0 | _ 0 \- > : | ^ | | | | | | | (c) | $\lim_{n\to\infty}P(T_n-\theta)$ | | | | ٠ | | | | | | (d) | $\lim_{n\to\infty}P(T_n-\theta$ | $ <\epsilon)$ | $=0 \ \forall \epsilon > 0$ | 0 | | | | | | | | 11 | | | | | | | | | * | The Neyman-Pearson lemma provides the best critical region for testing [1] null hypothesis against [2] alternative hypothesis. Here | |-----|--| | • | (a) $[1] = \text{simple}, [2] = \text{simple}$ (b) $[1] = \text{simple}, [2] = \text{composite}$ | | | (c) [1] = composite, [2] = simple (d) none of these | | | Neyman-Pearson lemma [1] null hypothesis against [2] alternative hypothesis ਦੀ ਜਾਂਚ ਲਈ
ਸਭ ਤੋਂ ਉੱਤਮ ਵਿਸ਼ਲੇਸ਼ਣਵੀ ਖੇਤਰ ਦੱਸਦਾ ਹੈ | | | (a) [1] = ਸਧਾਰਨ, [2} = ਸਧਾਰਨ, (b) [1] = ਸਧਾਰਨ, [2} = ਜਟਿਲ | | • | (c) [1] = ਜਟਿਲ, [2} = ਸਧਾਰਨ, (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | 20. | The likelihood ratio test is used for testing [1] null hypothesis against [2] alternative | | | hypothesis. Here | | | (a) [1] = simple or composite, [2] = simple or composite | | | (b) [1] = simple , [2] = simple (c) [1] = composite, [2] = composite | | | (d) none of these | | | [1] null hypothesis against [2] alternative hypothesis ਦੀ ਜਾਂਚ ਲਈ ਸਮ-ਅਨੂਪਾਤਕ ਨਿਰੀਖਣ ਹੈ: | | | (a) [1] = ਸਧਾਰਨ ਜਾਂ ਜਟਿਲ, [2] = simple or composite | | | (b) [1] = ਸਧਾਰਨ , [2] = ਸਧਾਰਨ | | | (c) [1] = ਜਟਿਲ, [2] = ਜਲਿਟ | | | (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | 21. | For the validity of F-test in the analysis of variance, the following assumption is/are made: | | · | (a) the observations are independent. (b) the parent population from which observations are taken is normal. (c) the various treatment and environment effects are additive in nature. (d) all of these ਭਿੰਨਤਾ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ F-test ਦੀ ਵੈਧਤਾ ਲਈ, ਹੇਠ ਲਿਖੀਆਂ ਮਾਨਤਾਵਾਂ ਬਣਾਈਆਂ ਗਈਆਂ ਹਨ: | | | | | | (a) 59 H350 VA | | | | | | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ | | | | | 22. | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ
(c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ
(d) ਇਹ ਸਾਰੇ | | 22. | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ
(c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ
(d) ਇਹ ਸਾਰੇ
If $X_{p\times 1} \sim N_p(\mu, \Sigma)$, then AX follows, where A is a matrix of rank $q \leq p$, | | 22. | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ
(c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ
(d) ਇਹ ਸਾਰੇ
If $X_{p\times 1} \sim N_p(\mu, \Sigma)$, then AX follows, where A is a matrix of rank $q \leq p$,
(a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$
(c) $N_n(A\mu, A'\Sigma A)$ (d) $N_a(A\mu, A'\Sigma A)$ | | 22. | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ
(c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ
(d) ਇਹ ਸਾਰੇ
If $X_{p\times 1} \sim N_p(\mu, \Sigma)$, then AX follows, where A is a matrix of rank $q \leq p$,
(a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$
(c) $N_n(A\mu, A'\Sigma A)$ (d) $N_a(A\mu, A'\Sigma A)$ | | 22. | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ
(c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ
(d) ਇਹ ਸਾਰੇ
If $X_{p\times 1} \sim N_p(\mu, \Sigma)$, then AX follows, where A is a matrix of rank $q \leq p$,
(a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$
(c) $N_p(A\mu, A'\Sigma A)$ (d) $N_q(A\mu, A'\Sigma A)$
ਜੇਕਰ $X_{p\times 1} \sim N_p(\mu, \Sigma)$ ਫਿਰ AX ਪਾਲਣਾ ਕਰਦਾ ਹੈ ਜਿੱਥੇ A $q \leq p$ ਦਰਜੇ ਦਾ ਮੈਟਰਿਕਸ ਹੈ | | 22. | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ
(c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ
(d) ਇਹ ਸਾਰੇ
If $X_{p\times 1} \sim N_p(\mu, \Sigma)$, then AX follows, where A is a matrix of rank $q \leq p$,
(a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$
(c) $N_p(A\mu, A'\Sigma A)$ (d) $N_q(A\mu, A'\Sigma A)$
ਜੇਕਰ $X_{p\times 1} \sim N_p(\mu, \Sigma)$ ਫਿਰ AX ਪਾਲਣਾ ਕਰਦਾ ਹੈ ਜਿੱਥੇ A $q \leq p$ ਦਰਜੇ ਦਾ ਮੈਟਰਿਕਸ ਹੈ
(a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$ | | | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ
(c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ
(d) ਇਹ ਸਾਰੇ
If $X_{p\times 1} \sim N_p(\mu, \Sigma)$, then AX follows, where A is a matrix of rank $q \leq p$,
(a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$
(c) $N_p(A\mu, A'\Sigma A)$ (d) $N_q(A\mu, A'\Sigma A)$
ਜੇਕਰ $X_{p\times 1} \sim N_p(\mu, \Sigma)$ ਫਿਰ AX ਪਾਲਣਾ ਕਰਦਾ ਹੈ ਜਿੱਥੇ A $q \leq p$ ਦਰਜੇ ਦਾ ਮੈਟਰਿਕਸ ਹੈ
(a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$
(c) $N_p(A\mu, A\Sigma A)$ (d) $N_q(A\mu, A'\Sigma A)$ | | | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ (c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ (d) ਇਹ ਸਾਰੇ $ \text{If } X_{p\times 1} \sim N_p(\mu, \Sigma), \text{ then } AX \text{ follows, where } A \text{ is a matrix of rank } q \leq p, \\ \text{(a)} N_p(A\mu, A\Sigma A') \qquad \qquad \text{(b)} N_q(A\mu, A\Sigma A') \\ \text{(c)} N_p(A\mu, A'\Sigma A) \qquad \qquad \text{(d)} N_q(A\mu, A'\Sigma A) \\ \text{ਜੇਕਰ } X_{p\times 1} \sim N_p(\mu, \Sigma) \text{ ਫਿਰ } AX \text{ ਪਾਲਣਾ ਕਰਦਾ ਹੈ ਜਿੱਥੇ } A q \leq p \text{ ਦਰਜੇ ਦਾ ਮੈਟਰਿਕਸ ਹੈ} \\ \text{(a)} N_p(A\mu, A\Sigma A') \qquad \qquad \text{(b)} N_q(A\mu, A\Sigma A') \\ \text{(c)} N_p(A\mu, A'\Sigma A) \qquad \qquad \text{(d)} N_q(A\mu, A'\Sigma A) \\ \text{In the case of simple random sampling without replacement, the probability of two} $ | | | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ (c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ (d) ਇਹ ਸਾਰੇ If $X_{p\times 1} \sim N_p(\mu, \Sigma)$, then AX follows, where A is a matrix of rank $q \leq p$, (a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$ (c) $N_p(A\mu, A'\Sigma A)$ (d) $N_q(A\mu, A'\Sigma A)$ ਜੇਕਰ $X_{p\times 1} \sim N_p(\mu, \Sigma)$ ਫਿਰ AX ਪਾਲਣਾ ਕਰਦਾ ਹੈ ਜਿੱਥੇ A $q \leq p$ ਦਰਜੇ ਦਾ ਮੈਟਰਿਕਸ ਹੈ (a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$ (c) $N_p(A\mu, A\Sigma A')$ (d) $N_q(A\mu, A\Sigma A')$ (n) In the case of simple random sampling without replacement, the probability of two specified units in the population of size N to be included in the sample of size n is | | | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ (c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ (d) ਇਹ ਸਾਰੇ | | 22. | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ (c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ (d) ਇਹ ਸਾਰੇ | | | (b) ਮੁੱਖ ਜਨਸੰਖਿਆ ਜਿਸ ਵਿੱਚੋਂ ਤੱਥ ਲਏ ਗਏ ਹਨ, ਸੁਤੰਤਰ ਹੈ (c) ਵਿਭਿੰਨ ਇਲਾਜ ਅਤੇ ਵਾਤਾਵਰਨ ਪ੍ਰਭਾਵ ਸੁਭਾਅ ਪੱਖੋਂ ਵਧੀਕ ਹਨ (d) ਇਹ ਸਾਰੇ If $X_{p\times 1} \sim N_p(\mu, \Sigma)$, then AX follows, where A is a matrix of rank $q \leq p$, (a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$ (c) $N_p(A\mu, A'\Sigma A)$ (d) $N_q(A\mu, A'\Sigma A)$ ਜੇਕਰ $X_{p\times 1} \sim N_p(\mu, \Sigma)$ ਫਿਰ AX ਪਾਲਣਾ ਕਰਦਾ ਹੈ ਜਿੱਥੇ A $q \leq p$ ਦਰਜੇ ਦਾ ਮੈਟਰਿਕਸ ਹੈ (a) $N_p(A\mu, A\Sigma A')$ (b) $N_q(A\mu, A\Sigma A')$ (c) $N_p(A\mu, A\Sigma A')$ (d) $N_q(A\mu, A\Sigma A')$ (c) $N_p(A\mu, A'\Sigma A)$ (d) $N_q(A\mu, A'\Sigma A)$ In the case of simple random sampling without replacement, the probability of two specified units in the population of size N to be included in the sample of size n is | | 24. | The | stratified sampling | g is us | ually prefer | red wh | nen the nature of p | popula | ntion is | |-----|-------------|---|----------|---|----------------------|-------------------------------|--------------------|---------------------------------------| | | (a)
ਦਰਜਾ | heterogeneous
ਬੰਦ ਸੈਂਪਲਿੰਗ ਨੂੰ ਤਰਜ | • • | • | | | (d)
ਹੈ | none of these | | | (a) | ਭਿੰਨਤਾਪੁਰਕ | (b) | | | ਕਿਸੇ ਵੀ ਤਰਾਂ ਦੇ | | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | 25. | | ratio estimator of
unit estimator if co | | | | | | etter than simple mean | | | (a) | negative | | positive | | | | none of these | | | ਜੇਕਰ | ~ | ਨਸੰਖਿਅ | ı [™] ਅੋਸਤ ਦਾ € | ਤੋਨ ੁਮਾਨ:
| ਤ ਅਨੁਪਾਤ ਪ੍ਰਤੀ ਇ ਰ | ਸਾਈ [ੰ] ਅ | <i>ਜ</i> ੁਮਾਨਕ ਤੇ ਸਧਾਰਨ ਔਸਤ | | | (a) | | - | ਧਨਾਤਮਕ | _ | | | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | 26. | | Latin Square De | - | | atmen | ts, the degrees o | f free | dom of error sum of | | | • | (m-1)(m-2) | | • | (c) | (m-2) | (d) | none of these | | | | | | | | | | ਤਰੁਟੀਆਂ ਦੇ ਵਰਗਾਂ ਦੇ ਜੋੜਾਂ | | | | degrees of freedo | _ | | ., | | | - - | | | | (m-1)(m-2) | | (m-1) | (c) | (m-2) | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | 27 | T | 23 footonial danie | F- | | 4 h a mu | mhar af traatman | to oro | | | 27. | | 2 ³ factorial desig | _ | _ | | _ | | | | | (a) | <i>ਾ</i>
' ਦੀ 2 ³ – ਫੈਕਟੋਰੀਅਲ | (b) | 6
: | (c) | 5
ਜੰਮਿਕਰ ਤੈ | (d) | 0 | | | - | | | • | | | <i>(</i> 1) | 0 | | | (a) | 7 | (b) | 6 | (c) | 5 | (d) | 8 | | 28. | Ford | a balanced incomp | ollete b | lock design | with t | parameters V h r | <i>L</i> 2 · | we have | | 40. | | Vr = bk | Mete D | iock acsign | | $\lambda(V-1)=r(k$ | | WC Have | | | (a) | _ | | | ` ' | • • | . – 1) | | | | (c) | b ≥ r
ਹਿਟਰਾਂ V,b,r.k,λ,ਹ | माम सि | ਕਿ ਜ਼ਿਤੀਕਤ ਅ | | all of these
ਕਮਨ ਕਰਨਾ ਲਈ ਸ | ਸਵੇ ਨੋਨ | ਕ ੈ । | | | | 1 | 1 | | _ | | | · · · · · · · · · · · · · · · · · · · | | | • • | 4 | l | | | $\lambda(V-1)=r(k)$ | . – 1) | | | | (c) | $b \ge r$ | | | (d) | ਇਹ ਸਾਰੇ | | | | 29. | | denote the relial | - | of the ith co | ompor | nent; $i = 1,2,$ | , n | then the reliability of | | | - | $\prod_{i=1}^n p_i$ | · | | (b) | $1-\prod_{i=1}^n(1-p)$ | $_{i})$ | | | | | $\prod_{i=1}^n (1-p_i)$ | | | | $1 - \prod_{i=1}^n p_i$ | • | | | | ਜੇਕਰ | | 1,2, | | | | ं मभंट | ਨਾਂਤਰ ਪ੍ਰਣਾਲੀ ਦੀ ਸਥਿਰਤ <u>ਾ</u> | | | | $\prod_{i=1}^n p_i$ | | | (h) | $1-\prod_{i=1}^n(1-p)$ | a) | | | | | $\prod_{i=1}^n (1-p_i)$ | | | | $1 - \prod_{i=1}^{n} p_i$ | U | • | | D | (0) | 11i=1*-PiJ . | | | 7 | • III=1Pi | | Paper-II (Maths) | | - | | | | | • | | | | | 30. | plane. Then, a linear function where c_1 , (a) The origin only (b) any points (| c ₂ ar
(c)
ਜੋ ਫਿ | the vertices only (d) None of these
ਕਿ ਪਲੇਨ ਵਿੱਚ ਰੇਖਾਵਾਂ ਦੁਆਰਾ ਬੰਨਿਆ ਗਿਆ ਹੈ। ਫਿਰ | |-----|--|---|---| | | (a) ਸਿਰਫ ਅਰੰਭ (b) ਕੋਈ ਵੀ ਬਿੰਦੂ (| (c) | ਸਿਰਫ ਸਿਰੇ (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | 31. | Given a set of vectors $\{x_1, x_2,, x_k, \lambda_k x_k \text{ is called a convex combination} (a) \lambda_1, \lambda_2,, \lambda_k \geq 0 \text{ and } \sum_{i=1}^{i=k} \lambda_i (b) \lambda_1, \lambda_2,, \lambda_k \geq 0 \text{ and } \sum_{i=1}^{i=k} \lambda_i (c) \forall \lambda_i^s \text{ and } \sum_{i=1}^{i=k} \lambda_i = 1 (d) None of these ਵੈਕਟਰਾਂ ਦੇ ਇੱਕ ਦਿੱਤੇ ਹੋਏ ਸੈੱਟ \{x_1, x_2,, x_k\} x = \lambda_1 x_1 + \lambda_2 x_2 +, \lambda_k x_kਦਿੱਤੇ ਗਏ \{x_1, x_2,, x_k\} (a) \lambda_1, \lambda_2,, \lambda_k \geq 0 \text{ and } \sum_{i=1}^{i=k} \lambda_i (b) \lambda_1, \lambda_2,, \lambda_k \geq 0 \text{ and } \sum_{i=1}^{i=k} \lambda_i (c) \forall \lambda_i^s \text{ and } \sum_{i=1}^{i=k} \lambda_i = 1 (d) ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ$ | on of
= 1
≠ 1
}, ਰੇਪ
ਵੈਕਟਰ
= 1 | 1
1
ਖਾਬੱਧ ਸੰਯੋਜਨ
ਤਰਾਂ ਦਾ ਉੱਤਲ ਸੰਯੋਜਨ ਕਹਾਉਂਦਾ ਹੈ ਜੇਕਰ
1 | | 32. | A queuing system $M/G/1$ has | | | | , | | (b) | an exponential inter-arrival time distribution | | | (c) arbitrary service time distribution (
ਇੱਕ ਕਤਾਰ ਪ੍ਰਣਾਲੀ M/G/1 ਦਾ ਹੈ | (d) | all of these | | | (a) ਇੱਕ ਇਕਹਿਰਾ ਰਸਤਾ (| (b) | ਇੱਕ ਅੰਤਰ ਪਹੁੰਚ ਸਮਾਂ ਵੰਡ | | | (c) ਸਾਲਸੀ ਸੇਵਾ ਸਮਾਂ ਵੰਡ (| (d) | ਇਹ ਸਾਰੇ | | 33. | component has reliability $R_i(t)$ then the r (a) $R(t) = R_1(t) + R_2(t) + \dots + R_n(t)$ (b) $R(t) = R_1(t) \cdot R_2(t) \cdot \dots \cdot R_n(t)$ (c) $R(t) = R_1(t) \cdot R_2(t) + R_3(t) \cdot R_4(t)$ (d) $R(t) = R_1(t) - R_2(t) + R_3(t) - R_4(t)$ | reliab
(t)
) +
t) + | 70 2 3 7 7 7 | | | ਹੈ ਤਾਂ ਸਾਰੀ $R(t)$ ਪ੍ਰਣਾਲੀ ਦੀ ਸਥਿਰਤਾ ਹੋਵੇਗੀ: | | | | | (a) $R(t) = R_1(t) + R_2(t) + \dots + R_n(t)$ | (t) | | | | (b) $R(t) = R_1(t).R_2(t)R_n(t)$ | | • | | | (c) $R(t) = R_1(t).R_2(t) + R_3(t).R_4(t)$ | | 7. 2 | | | (d) $R(t) = R_1(t) - R_2(t) + R_3(t) - R_4(t)$ | t) + | $- \ldots + R_{n-1}(t) - R_n(t)$ | | 34. | If A | and B are two s | ets, then | $A \cup B = A_0$ | ∩B if | and only if | | | | |-----|--------|---------------------------|------------|------------------|-------------------|-------------------|------------|---------------|-----------| | | (a) | A⊆B | | B⊆A | ` ' | A = B | (d) | A ≠ B | | | | ने А | ਅਤੇ B ਦੋ ਸੈਂਟ ਹਨ | , ਫਿਰ A | v∩B = A∪E | 3 ਸਿਰਫ | ਅਤੇ ਸਿਰਫ | | | | | | (a) | $A \subseteq B$ | (b) | B⊊A | (c) | A = B | (d) | A≠B | | | | | | | | | | | • | | | 35. | If al | $N = \{ax : x \in$ | N}, the | n the set 2N | l∩6N i | s | • | | | | | (a) | 2N | (b) | 4N | (c) | 6N | (d) | 12N | ٠ | | | में al | $N = \{ax : x \in$ | N} ਫਿਰ | ਸੈੱਟ 2N∩6 | Ν ਹੈ : | | | | | | | (a) | 2N | (b) | 4N | (c) | 6N | (d) | 12N | | | | | | | | | | • | | | | 36. | The | number of prop | er subse | ts of the se | t { <i>x</i> , y, | , z } is | | | | | | (a) | 6 | (b) | | (c) | 8 | (d) | 2 | | | | ਸੈਂਟ | {x, y, z} ਦੇ ਪੂਰਨ | ਸਬਸੈਂਟਾਂ ਵ | ਦੀ ਗਿਣਤੀ ਹੈ: | : | | | | | | | (a) | 6 | (b) | | (c) | 8 | (d) | 2 | | | | () | | • | | | • | | | | | 37. | In a | city, 30 percen | t of the | population | travel | s by car and 4: | 5 percent | travels by bu | is and 15 | | | perc | ent travels by b | oth car a | and bus. The | e perso | ons travelling b | y car or b | us is | | | | (a) | 75 | ` ' | 45 | ` ' | 30 | (d) | 60 | | | | ਇੱਕ | ਸ਼ਹਿਰ ਵਿਚ 30% | ਜਨਸੰਖਿ | ਆਂ ਕਾਰ ਦੁਅ | ਾਰਾ ਸਫ਼ | ਰ ਕਰਦੀ ਹੈ ਅਤੇ | 45% ਬੱਸ | ਦੁਆਰਾ ਅਤੇ | 15% ਕਾਰ | | | ਅਤੇ | ਬੱਸ ਦੋਨਾਂ ਦੁਆਰਾ, | ਕਿਨ ਪ੍ਰਤ | ਸ਼ਿਤ ਲਕ ਕਾਰ | ਜਾਬਾ | ਸ ਦੁਆਰਾ ਸਫ਼ਰ ਫ | | | | | | (a) | 75 | (b) | 45 | (c) | 30 | (d) | 60 | | | | | | | | | | , | | | | 38. | If A | $x = \{ (x, y) : x^2 +$ | $y^2 = 25$ | $}$ and $B = {$ | (x, y) | $x^2 + 9y^2 = 14$ | | | | | | (a) | • | - , | - | | 2 points | | 3 points | | | | ने A | $= \{ (x, y) : x^2 +$ | | | | | | | ' ਹਨ | | | (a) | ਕੋਈ ਅੰਕ ਨਹੀਂ | (b) | 4 ਅੰਕ | (c) | 2 ਅੰਕ | (d) | 3 ਅੰਕ | | | | | | | | | | | | | | 39. | If 2 | < x < 3 then | 1 . | | | | | | | | | (a) | (x-3)(x- | 2) < 0 |) | (b) | (x-3)(x-3) | -2) > 0 | | | | | (c) | $\frac{(x-3)}{(x-2)} > 0$ | | | (d) | (x-3) > | (x-2) | | | | | | (x−2)
; < x < 3 ਫਿਰ | | | | | | · . | | | | | | | ` | (h) | (x-3)(x-3) | - 2) > n | | | | | | (x-3)(x- | 2) < (| , | | | | | | | | (c) | $\frac{(x-3)}{(x-2)} > 0$ | | | (d) | (x-3) > | (x-2) | | | | 40. | The | e equation $ x $ | 4 = | x has solu | ition | | | | | | |-----|--------------|-------------------------------------|---------------------|-------------------------------|--------------------|---------------|-------------|------------|----------------|----------| | | (a) | x = 2 | (b) | x = - | 2 (c) | x = | -4 | (d) | x = 4 | | | | ਸਮੀ | ਕਰਨ x + 4 = | = 🗴 ਦਾ | ਹੱਲ | • | | | | | | | | (a) | x = 2 | (b) | x = - | ·2 (c) | <i>x</i> = | -4 | (d) | x = 4 | | | 41. | Wh | ich one of the fo | | | | | | | | • | | | (a) | The set of natu | ıral nuı | mbers is u | ncounta | ble. | | | | | | | (b) | The set of ratio | onal nu | mbers is o | countabl | e. | | | | | | | (c) | The set of irra | | | | ble. | | | | | | | (d) | The set of real | | | | | | | | | | | | ਲਿਖਿਆਂ ਵਿਚੋਂ ਕਿਹ | | • • • • | • | | | | | | | | (a) | ਕੁਦਰਤੀ ਸੰਖਿਆਵ | ਾਂ ਦਾ ਸੈੱਟ | ਟ ਗਿਣਨਯੋਗ | । ਨਹੀਂ ਹੈ | | | | | | | | (b) | ਪਰਿਮੇਯ ਸੰਖਿਆਵ | ਾਂ ਦਾ ਸੈੱਟ | ਟ ਗਿਣਨਸ਼ੀਨ | ਤ ਹੈ | | | | | | | | (c) | ਅਪਰਿਮੇਯ ਸੰਖਿਅ | ਵਾਂ ਦਾ ਹੈ | ਸੈਂਟ ਗਿ <mark>ਣ</mark> ਨਸ਼ੀ | ੀਲ ਹੈ | | | | | | | | (d) | ਅਸਲ ਸੰਖਿਆਵਾਂ | ਦਾ ਸੈਂਟ: | ਗਿਣਨਸ਼ੀਲ ਹੈ | ਹੈ | | | | | | | 42. | Whi | ich one of the fol | lowing | statemen | ts is inc | orrect? | | | | | | | (a) | Every non-emp | | | | | | i above i | nas infimum. | | | | (b) | Every non-emp | oty set | of real nu | mbers w | hich is | bounde | i above l | nas supremum. | | | | (c) | Every non-em bounded. | pty se | t of real | number | s has 1 | both suj | oremum | and infimum | if it is | | | (d)
ਹੇਨ 1 | The set of real
ਲਿਖਿਆ ਵਿਚੋਂ ਕਿਹੜ | numbe
ਹਾਕਸਨ | rs is an or
ਗਲਤ ਹੈ ਤ | dered o | omplete | field. | | | | | | (a) | ਹਰ ਅਸਲ ਸੰਖਿਆ | | | • | च मिक्स | 3 :e | 4 | | | | | (b) | ਹਰ ਅਸਲ ਸੰਖਿਆ | | | | | | | | • | | | (c) | ਹਰ ਅਸਲ ਸੰਮਿਆ | rencina
Nation | रूपाला कर
स्टब्स्या | с п о ч | 0 01105 | o supre | mum U | | ~ ~ a | | | (d) | ਹਰ ਅਸਲ ਸੰਖਿਆ
ਅਸਲ ਸੰਖਿਆਵਾਂ ਹ | ਾਵਾ ਦਾ
ਹਾ ਬੈੱਟ (| റ∙−ദശ
വ്ചച ത് റ | HC HQC | i gilos | 0 3' 5 | upremun | n ਅਤ infimum | ਦਨ ਹ | | | (u) | ANICO MIGNIFE | C. HC | сч улач | ପ୍ରବନ ସ | 20 0 1 | | | | | | 43. | If th | e altitudes of a tr | iangle | are in A.P | , then t | he side: | s of the t | riangle a | re in | | | | (a) | A.P. | (b) | G.P. | (c) | H.P. | | (d) | none of these | | | | ਜੇਕਰ | ਇੱਕ ਤਿਕੋਣ ਦੀਆਂ | ਉਚਾਈ | ਆਂ A.P. ਵਿ | ਚ ਹਨ ਤ | ਂ ਤਿਕੋਣ | ਦੀਆਂ ਭੂਜ | ਾਵਾਂ ਹਨ | | | | | (a) | A.P. | (b) | G.P. | (c) | H.P. | | (d) | ਕੋਈ ਵੀ ਨਹੀਂ | | | 44. | If in | an infinite G.P., | first te | rm is equa | al to thri | ce the s | sum of a | ll the rer | naining terms, | then its | | | com | mon ratio is | | , | | | | | | | | | (a) . | 1 | (b) | $\frac{1}{2}$ | (c) | $\frac{1}{3}$ | | (d) | 1/4 | | | | ਜੇਕਰ | ਇੱਕ ਅਸੀਮ G.P. | ਵਿੱਚ ਪ | ਹਿਲੀ ਉਕਤੰ | ੇ ਬਚੀਆਂ | ਉਕਤੀਅ | ਾਂ ਦੇ ਜੋੜ | ਦੇ ਤਿੰਨ ਰੁ | ਣਾ ਦੇ ਬਰਾਬਰ ਹੈ | ਤਾਂ ਇਸ | | | ਦਾ ਸਾ | ਾਂਝਾ ਅਨੁਪਾਤ ਹੈ: | | _ | | | | | · |
| | | (a) | 1 | (b) | $\frac{1}{2}$ | (c) | 1 | | (d) | 1 | | | | , | | ` / | 2 | (-) | 3 | | (4) | 4 | | | 45. | The | A.M., G.M. and I | H.M. b | etween two | positi | ve numbers a and | b are | equal, then | |-----|-------|---|-------------------------------|--------------------------------------|-------------|---|---------|-------------------------------| | | (a) | a = b | (b) | ab = 1 | (c) | ab = 2 | (d) | $\mathbf{a} + \mathbf{b} = 0$ | | | ਦੋ ਧਰ | ਨਾਤਮਕ ਸੰਖਿਆਵਾਂ a | ਅਤੇ b | ਦੇ ਦਰਮਿਆਨ | ਅਗਰ | A.M., G.M. ਅਤੇ | H.M. ¥ | ਬਰਾ ਬਰ ਹਨ ਤਾਂ | | | (a) | a = b | (b) | ab = 1 | (c) | ab = 2 | (d) | $\mathbf{a} + \mathbf{b} = 0$ | | 46. | | ne roots of the equerence is | uation | $x^3 - 12x^2$ | + 39 | 9x - 28 = 0 are | in A.P | , then their common | | | (a) | | | 2 | | | (d) | · _ | | | ਜੇਕਰ | ਸਮੀਕਰਨ x^3 – 12 | $x^2 +$ | 39x - 28 = | : 0 ਦੇ | ਮੂਲ A.P. ਵਿਚ ਹਨ | ਤਾਂ ਉਹਨ | ਨਾਂ ਦਾ ਸਾਂਝਾ ਅੰਤਰ ਹੈ : | | | (a) | 1 | (b) | 2 | (c) | 3 | (d) | ±3 | | 47. | Sum | of n terms of the | e serie | $\sqrt{2} + \sqrt{8}$ | + √1 | $18 + \sqrt{32} + \dots$ | is | | | | (a) | $\frac{n}{n+1}$ | (b) | $\frac{n(n+1)}{2}$ | (c) | n(2n + 1) | (d) | $\frac{n(n+1)}{\sqrt{2}}$ | | | | $+\sqrt{8}+\sqrt{18}+\sqrt{18}$ | | | | | | | | | - | $\frac{n}{n+1}$ | | | | n(2n+1) | | $\frac{n(n+1)}{\sqrt{2}}$ | | 48. | The | series $\sum_{n=0}^{\infty} (2x)$ |) ⁿ cor | verges if | | | | | | 70. | | $-1 \le x \le 1$ | , , , , | | (b) | $-\frac{1}{2} < x < \frac{1}{2}$ | | | | | ` ' | -2 < x < 2 | : | | | $-\frac{1}{2} \le x \le \frac{1}{2}$ | | | | | ` ' | $\sum_{n=0}^{\infty} (2x)^n$ ਨਿਬੜ | <u>- 1</u> 3 ÷ | ਹਿਕ • | (u) | 2 - 2 | | | | | | | ei a i | 100. | 4. | 1 1 | | | | | ` ' | $-1 \le x \le 1$ | | | | $-\frac{1}{2} < x < \frac{1}{2}$ | | | | | (c) | -2 < x < 2 | | | (d) | $-\frac{1}{2} \le x \le \frac{1}{2}$ | | | | 49. | The | sequence < 1, - | $\frac{1}{2}, \frac{1}{4}, -$ | $-\frac{1}{4}, \frac{1}{5}, \dots >$ | · is | | | | | | | Convergent | | | | Oscillatory | (d) | None of these | | | | $<1,-\frac{1}{2},\frac{1}{3},-\frac{1}{4},$ | | | | | | • | | | (a) | 2 3 4
ਕੇਂਦਰ ਮੁਖੀ | (b) | ਭਿੰਨ ਦਿਸ਼ਾਵੀ | f (c) | ਅਸਥਿਰ | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | | ** | $\sum u_n$ is a positive | | | lima | $\int_{0}^{1} \frac{1}{n} > 1 \text{the}$ | n tha | carias is · | | 50. | | | | | | $\lim_{n \to \infty} u_n ^n > 1$, the Oscillatory | | none of these | | | • • | \mathbb{D} ivergent
ਰ $\sum u_n$ ਵਿੱਕ ਧਨਾਤ n | | | | | • • | | | | | | | | | u_n u_n u_n Oscillatory | | | | | (a) | Divergent | (D) | Converge | | Oscillatory | (u) | | | D | | | | | 11 | | | Paper-II (Maths) | | | | | | | | | | • | | |------------|------|--|--------------------------------|--------------------|---------------------------|-----------------------|----------------|-------------------|---------| | 51. | The | e series $\sum_{n=0}^{\infty}$ | $= 1 \frac{\sin nx}{n^p}, p >$ | > 1 conve | rges unif | ormly for | | | | | | (a) | x > 1 | (b | x=1 | (c) | x < 1 | (d) | all real value | es of x | | | ਕ੍ਰਮ | $\sum_{n=1}^{\infty} \frac{\sin n}{n^p}$ | <u>×</u> ,p>1 ਇਹ | ਸਾਰ ਨਿਬੜ | ਦਾ ਹੈ : | | | | | | | (a) | <i>x</i> > 1 | (b) | x=1 | (c) | <i>x</i> < 1 | (d) | x ਦੇ ਸਾਰੇ ਅਸ | ਲ ਮੁੱਲ | | 52. | The | term cont | aining x^3 in | the expan | sion (x - | - 2y) ⁷ is | | | | | | | 3 rd | | 2 nd | | 4 th | (d) | 5 th | | | | (x - | – 2y) ⁷ ਦੇ 1 | ਵਿਸਤਾਰ ਵਿੱਚ | x^3 ਵਾਲੀ ਪ | ਮ ਦ ਹੈ: | | , , | | | | | (a) | ਤੀਸਰੀ | (b) | ਦੂਸਰੀ | (c) | ਚੌਥੀ | (d) | ਪੰਜਵੀ | | | 53. | Con | istant term | in the expan | nsion of (x | $(1-\frac{1}{x})^{10}$ is | S . | | | | | | (a) | 3 rd | (b) | 4 th | (c) | 5 th | (d) | 6 th | | | | (x - | – 1) ¹⁰ ਦੇ ਵਿ | ਵਸਤਾਰ ਵਿੱਚ ਸ | ਸ਼ਾਈ ਪਦ ਹੈ | Ì | • | | | | | | | | (b) | | | ਪੰਜਵੀਂ | (d) | ਛੇਵੀ [:] | | | 54. | In P | ascal's tria | angle, each r | ow is bou | nded by | | | | | | - | (a) | 1 | (b) | 2 | (c) | -1 | (d) | -2 | | | | ਪਾਸਰ | ਕਲ ਤਿਕੋਣ ਵਿ | ਵੇਚ ਹਰ ਕਤਾਰ | ਗਠਿਤ ਹੈ | | | | | | | | (a) | 1 | (b) | 2 | (c) | -1 | (d) | -2 | | | 55. | The | result 'Eve | ery infinite l | ounded so | et of real | numbers h | as a limit poi | nt' is | | | | | | | | | | orel theorem | | | | | (c) | Bolzano- | -Weierstrass | theorem | (d) | None of t | hese | | | | - | ਨਤੀਜ | ਜ਼ਾ "ਅਸਲ ਸੰ | ਜਿੱ <mark>ਖਿਆਵਾਂ</mark> ਦੇ ਹ | ਰੇਕ ਅਸੀ ਮ ਹ | ਗਠਿਤ ਸੈੱਟ | ਦਾ ਸੀਮਤ ਇੰ | ੰਦੂ ਹੈ" ਹੈ | | | | | (a) | ਬਾਈਨੋਮੀਅ | ਮਲ ਸੂਤਰ | | (b) | ਹਾਈਨ– ਬੋ | ਰਲ ਸੂਤਰ | | | | | (c) | ਬੋਲਜ਼ਾਨੋ- | ਵੀਅਰਸਟ੍ਰਾਸ ਸੂ | ਤਰ | (d) | ਇਹਨਾਂ ਵਿੱਚ | ਤੋਂ ਕੋਈ ਨਹੀਂ | | | | 56. | The | function f | $f(x) = 2^{\frac{1}{x}} is$ | not contir | nuous at | | • | | | | | (a) | | (b) | | (c) | -1 | (d) | any point | | | | ਫਲਨ | f(x) = | 2 [±] ਇਸ 'ਤੇ ਰਿ | ਨਰੰਤਰ ਨਹੀਂ | , , | | | 14 (1.3 | | | | (a) | 0 | | 1 | (c) | -1 | (d) | ਕੋਈ ਵੀ ਬਿੰਦੂ | | | | | | | | | | | | | The function f(x) = |x + 2| is not differentiable at - (b) x = -2 (c) x = 1 - (d) x = -1 ਫਲਨ f(x) = |x + 2| ਨਿਖੇੜਮਈ ਨਹੀਂ ਹੈ - (a) x=2 (b) x=-2 (c) x=1 - (d) x = -1 58. $\frac{d}{dx} (\cos^{-1} x + \sin^{-1} x)$ is - (a) $\frac{\pi}{a}$ - (b) 0 - (c) $\frac{2x}{1-x^2}$ - (d) $\frac{2x}{\sqrt{1-x^2}}$ $\frac{d}{dx}\left(\cos^{-1}x+\sin^{-1}x\right)\,\overline{\partial}$ - (b) 0 - $(c) \quad \frac{2x}{1-x^2}$ - (d) $\frac{2x}{\sqrt{1-x^2}}$ 59. If $x = t^2$ and y = 2t then $\frac{d^2y}{dx^2}$ is equal to - (a) $-\frac{1}{t^2}$ (b) $-\frac{1}{2t^3}$ (c) $\frac{1}{2t^3}$ - (d) $\frac{1}{t^2}$ ਜੇਕਰ $x = t^2$ ਅਤੇ y = 2t ਫਿਰ $\frac{d^2y}{dx^2}$ ਬਰਾਬਰ ਹੈ - (a) $-\frac{1}{t^2}$ (b) $-\frac{1}{2t^3}$ (c) $\frac{1}{2t^3}$ - (d) $\frac{1}{t^2}$ The derivative of x^6 w.r.t. x^3 is 60. - (b) $3x^2$ (c) $2x^3$ - (d) x^3 x^6 ਦਾ ਡੈਰੀਵੇਟਿਵ w.r.t. x^3 ਹੈ - (a) $6x^3$ (b) $3x^2$ - (c) $2x^3$ - (d) x^3 Rolle's theorem is applicable to the function $f(x) = 3^{\sin x}$ in - any closed interval - (b) $[o,\pi]$ (c) $\left[o, \frac{\pi}{2}\right]$ (d) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ Rolle ਦਾ ਸੂਤਰ ਫਲਨ $f(x) = 3^{\sin x}$ ਉਪੱਰ ਲਾਗੂ ਹੁੰਦਾ ਹੈ - (a) ਕੋਈ ਵੀ ਨੇੜਲੇ ਅੰਤਰਾਲ - (b) $[o, \pi]$ (c) $\left[0,\frac{\pi}{2}\right]$ D (d) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ | 62. | The | function $f(x) =$ | $=\frac{1}{r}$ is | | | | | | | | | |-----|------------------|--|--------------------------------|-----------------------------|-----------------------|---------------------|-------------------------|-----------------|------------------------|---------|----------| | | (a) | continuous in [| 0, 1] | | (b) | unifor | mly cont | inuous | s in [0, 1] | | | | | (c) | discontinuous in | n [0,1 |] | (d) | continu | ious but r | ot unif | ormly con | inuous | is [0, 1 | | | ਫਲਨ | $f(x) = \frac{1}{x} \hat{\mathbf{J}}$ | | | | | | | | | • | | | (a) | [0, 1] ਵਿਚ ਨਿਰੰਤ | ਰ | | (b) | [0, 1] | ਵਿਚ ਇੱਕਸ | ਾਰ ਨਿਰ | ਜੰਤਰ | | | | | (c) | [0,1] ਵਿਚ ਅਨਿਰੰ: | ਤਰ | | (d) | [0, 1] | ਵਿਚ ਨਿਰੰਤ | ਰ ਪਰੰਤੂ | ੍ਹ ਇਕਸਾਰ | | | | 63. | The | tangent to the cur | rve x^2 | = 2y at the | point | $(1,\frac{1}{2})$ m | nakes wit | th <i>x-</i> ax | is an angl | e of | | | | (a) | 0^{o} | | 45° | | . –, | | | 60° | | | | | ਬਿੰਦੂ | $\left(1,\frac{1}{2}\right)$ 'ਤੇ ਵਕਰ x^2 | | | | | ਕਿੰਨੀ ਡਿਰ | , , | | ਈ ਹੈ | • | | | (a) | 0° | | 45° | | | | (d) | 60° | | | | | | | () | | (-) | | | (4) | 00 | | | | 64. | Min | imum value of sir | 1x fo | $r_{-\frac{\pi}{2}} \le x$ | $\leq \frac{\pi}{2}i$ | S | • | | | | | | | (a) | 0 | (b) | 1 | (c) | -1 | | (d) | $-\frac{1}{2}$ | | | | • | $-\frac{\pi}{2}$ | $\leq x \leq \frac{\pi}{2}$ ਲਈ sin | n x ਦਾ | ਨਿਊਨਤਮ ਮੁੱਲ | ਤ ਹੈ - | | | | _ | | | | | (a) | 0 | (b) | 1 | (c) | -1 | | (d) | $-\frac{1}{2}$ | | . • | | 65. | A sto | one thrown vertica | ally u _l
eight i | oward satisfin seconds is | ies the | equation | s = 80 | t – 16ť | ² . The tim | e requi | red to | | | (a) | _ | | | | 2.5 | | (d) | 3.5 | | | | | ਇੱਕ
ਉਚਾੲ | ਉਪੱਰ ਵੱਲ ਨੂੰ ਸੁੱਟਿਅ
ਹੀ 'ਤੇ ਪਹੁੰਚਣ ਲਈ ਸ | ਾ ਹੋਇ
ਜਕਿੰਟਾਂ | ਆ ਪੱਥਰ ਫਲ
ਵਿੱਚ ਲੋੜੀਂਦਾ : | ਨ s =
ਸਮਾਂ ਹੈ | 80t - 10 | 6t ² ਨੂੰ ਪੂਰ | ਨ ਕਰਦ | ਟਾਹੈ। ਇਸ | ਜ ਨੂੰ ਅ | ਧਕਤਮ | | | (a) | 2 | (b) | 3 | (c) | 2.5 | | (d) | 3.5 | | ٠. | | 66. | The i | rate of change of | the vo | lume of a sp | ohere v | w.r.t. its | surface a | rea wh | nen the ra | dius is | 2 cm, | | | (a) | 1 | | 2 | | | | (d) | | | | | | ਇੱਕ
ਵਿਆ | ਗੋਲੇ ਦੇ ਸਤਹਿ ਦੇ ਖੇਤ
ਸ 2cm ਹੈ : | ਰਫਲ | ਦੇ w.r.t. ਇਸ | ਦੇ ਅਇ | ਤਨ ਵਿਚ | ਪਰਿਵਰਤਨ | ਦੀ ਦ | ਰ ਹੈ ਜਦੋਂ ਹਿ | ੲਸ ਦਾ ਮ | ਅਰਧ- | | | (a) | 1 . | (b) | 2 | (c) | 3 | | (d) | 4 | | | | - | | | | | | | | | | | | | 67. | The function $f(x) =$ | cos x | - 2 <i>px</i> is m | onoto | nically decreasii | ng for | | |-----|---|----------------|---------------------------------|--------|-----------------------|--------|--------------------------------| | | (a) $p \leq \frac{1}{2}$ | | | | | | $p \geq 2$ | | | ਫਲਨ $f(x) = \cos x -$ | - 2px | ਇਕਹਿਰੇ ਰੂਪ | ਵਿਚ ਘ | ਼ਟ ਰਿਹਾ ਹੈ, ਲਈ | | | | | (a) $p \leq \frac{1}{2}$ | (b) | $p \geq -\frac{1}{2}$ | (c) | $p \leq 2$ | (d) | $p \ge 2$ | | 68. | If $\lim_{x\to o} \frac{\sin px}{\tan 3x} = 4$ | then th | ne value of p | is | | | | | | (a) 6 | (b) | 9 | (c) | 12 | (d) | 4 | | | (a) 6
ਜੇਕਰ $\lim_{x\to 0} \frac{\sin px}{\tan 3x} =$ | 4 ਹੈ ਤਾਂ | p ਦਾ ਮੁੱਲ ਹੈ | | | | | | | (a) 6 | (b) | 9 | (c) | 12 | (d) | 4 | | 69. | $\int \frac{1}{x \log x} dx \text{ is equal}$ | . to | | | | | | | | (a) $\log x$ | | log[log x] | (c) | log 1 | (d) | $\log[\log(\log x)]$ | | | $\int \frac{1}{x \log x} dx$ ਬਰਾਬਰ ਹੈ | | 0103 | | X | ` ` | | | | 74 TO 29 TO | | log[log w] | (0) | log 1 | (d) | log[log(log x)] | | | (a) $\log x$ | (0) | ingling x] | (0) | log x | (4) | 108[108(108*)] | | | $\frac{\pi}{2}$ | | | | | | | | | Č | | | | | | | | 70. | $\int \cos x dx \text{ is equal } t$ | to | | | , | | | | | $-\frac{\pi}{2}$ | | | | | | | | | (a) 0 | (b) | 1 | (c) | -1 | (d) | 2 | | | $-\frac{\pi}{2}$ (a) 0
$\frac{\pi}{2}$ | 1 | | | | • | | | | $\int \cos x \mathrm{d}x$ ਬਰਾਬਰ ਹੈ | t | | | | | | | | <i>J</i> | | | | | | | | | $-\frac{\pi}{2}$ | _(P) | | (a) | 1 | (d) | 2 | | | (a) 0 | (b) | 1 | (6) | -1 | (u) | 2 | | 71. | $\lim_{n\to\infty}\left(\frac{1}{n+1}+\frac{1}{n+2}\right)$ | + | $+\frac{1}{2n}$) is ϵ | qual 1 | to | | <i>(</i> 4) | | | ` ' | (b) | | (c) | 1 | (d) | $\log\left(\frac{1}{2}\right)$ | | | $\lim_{n\to\infty}\left(\frac{1}{n+1}+\frac{1}{n+2}\right)$ | + | + $\frac{1}{2n}$) ਬਰਾ | ਬਰ ਹੈ | • | | | | | (a) log 2 | | | | 1 | (d) | $\log\left(\frac{1}{2}\right)$ | | | | | | | | | \ 4/ | | 72. | The area of the curve | $ex^2 + y$ | $z^2 = 2ax$ is | | | | $\frac{1}{2}\pi a^2$ | | • | . 2 | 4. | 22 | 7-3 | 42 | (4) | <i>-</i> | ਵਕਰ $x^2 + y^2 = 2ax$ ਦਾ ਖੇਤਰ ਹੈ : (a) πa^2 (b) $2 \pi a^2$ (c) $4 \pi a^2$ (d) $\frac{1}{2} \pi a^2$ | 73. | For | For Riemann integrability, condition of continuity is | | | | | | | | |------------|-----|---|---|-----|------------|--|--|--|--| | | (a) | necessary | | (b) | sufficient | | | | | | | (0) | nagagami and sufficient | • | (4) | : 4 | | | | | necessary and sufficient (d) neither necessary nor sufficient Riemann integrability ਲਈ ਨਿਰੰਤਰਤਾ ਦੀ ਸ਼ਰਤ ਹੈ (b) ਕਾਫੀ (d) ਨਾ ਜ਼ਰਰੀ ਨਾ ਹੀ ਕਾਫੀ 74. $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ is convergent when (a) $$m > 0$$ (b) $$n > 0$$ (b) $$n > 0$$ (c) $m > 0, n > 0$ (d) m > 1, n > 1 $$\int_0^1 x^{m-1} (1-x)^{n-1} dx$$ ਕੇਂਦਰਮੁਖੀ ਹੈ ਜਦੋਂ (a) $$m > 0$$ (b) $$n > 0$$ (b) $$n > 0$$ (c) $m > 0, n > 0$ (d) m > 1, n > 1 75. If $\int_0^\infty |f(x)| dx$ is convergent then the integral $\int_0^\infty f(x) dx$ is conditionally convergent (b) uniformly convergent absolutely convergent (d) divergent ਜੇਕਰ $\int_0^\infty |f(x)| \ dx$ ਕੇਂਚਦਮੁਖੀ ਹੈ ਤਾਂ integral $\int_0^\infty f(x) \ dx$ ਹੈ (a) ਸ਼ਰਤੀਆ ਕੇਂਰਦਮਖੀ (b) ਇਕਸਾਰ ਕੇ ਰਦਮਖੀ (c) ਨਿਰਪੇਖ ਕੇਂਰਦਮਖੀ (d) ਭਿੰਨ ਦਿਸ਼ਾਵੀ Choose the incorrect statement: 76. - (a) Every countable set is Lebesgue measurable. - A function of bounded variation is always continuous. (b) - (c) Every continuous function is Lebesgue measurable. - Every Riemann integrable function is Lebesgue integrable. ਗ਼ਲਤ ਕਥਨ ਚਣੋ : ਹਰੇਲ ਗਿਣਨਯੋਗ ਸੈੱਟ Lebesgue ਮਾਪਣਯੋਗ ਹੈ (a) - ਗਠਿਤ ਬਦਲਾਵ ਦਾ ਇਕ ਫਲਨ ਹਮੇਸ਼ਾ ਨਿਰੰਤਰ ਹੁੰਦਾ ਹੈ (b) - ਹਰ ਨਿਰੰਤਰ ਫਲਨ Lebesgue ਮਾਪਣਯੋਗ ਹੈ (c) - ਹਰ Riemann integrable ਫਲਨ Lebesgue ਮਾਪਣਯੋਗ ਹੈ (d) | 77. | The | function $f(x, y)$ | = x + y | is | | | | . * | |------------|------------|--|--------------------------|-------------------|-----------------|----------------|------------------------|----------------| | , | (a) | discontinuous at | t the origin. | • | | | | ٠ | | | (b) | differentiable at | the origin. | • | | | • | | | | (c) | continuous as w | ell as differen | tiable at tl | ne origin. | | | 6.5 | | | (d) | continuous but r | not differential | ble at the | origin. | | | • | | | ਫਲਨ | f(x,y) = x + | + y ਹੈ | | | | | | | | (a) | ਉਤਪਤੀ 'ਤੇ ਅਨਿਰੰ | ਤਰ [ੰ] | (b) | ਉਤਪਤੀ ' | ਤੇ ਨਿਖੜੇਣਸ਼ੀਲ | | | | | (c) | ਉਤਪਤੀ 'ਤੇ ਨਿਰੰਤ | ਰ ਅਤੇ ਨਿਖੜੇਣਸ਼ੰ | ੀਲ (d) | ਉਤਪਤੀ ' | ਤੇ ਨਿਰੰਤਰ ਪਰੰਵ | ਤੂ ਨਿਖੜੇਣਸ਼ੀਲ ਨ | ਹੀਂ | | | · | | | | | • | | | | 78. | Whi | ch one of the folk | owing stateme | nts is inco | rrect? | | | | | | (a) | Every metric sp | ace has a com | pletion. | | | | | | | (b) | Every metric sp | ace is Hausdor | rff. | | | | | | | (c) | The real line (w | ith usual metri | c) is com | pact. | | | | | | (d) | The real line (w | ith usual metri | c) is conn | ected. | | | | | | ਹੇਠ 1 | ਲਿਖਿਆਂ ਵਿਚੋਂ ਕਿਹੜਾ | ਕੂਬਨ ਗਲਤ ਹੈ | | | | | | | | (a) | ਹਰ ਦਸ਼ਮਿਕ ਵਿਸਤ | ਾਰ ਦੀ ਸੰਪੂਰਨਤਾ | ਹੈ | | | | | | | (b) | ਹਰ ਦਸ਼ਮਿਕ ਖੇਤਰ | Hausdorff ਹੈ | | | | | | | | (c) | ਅਸਲ ਰੇਖਾ (ਆਮ ਰ | ਦਸ਼ਮਿਕ ਨਾਲ) ਸੰ | ਖਿਪਤ ਹੈ | • . | | | • | | | (d) | ਅਸਲ ਰੇਖਾ (ਆਮ | ਦਸ਼ਮਿਕ ਨਾਲ) ਜੁ | ੜੀ ਹੋਈ ਹੈ | ŀ | | | | | 79. | Cho | ose the correct sta | itement: | | | | - | | | | (a) | Every normed li | inear space is | connected | | | | | | | (b) | Every finite dim | ensional norm | ned linear | space is c | ompact. | | *. | | | (c) | Every metric sp | ace is a norme | d linear s | pace. | | • | | | | (d) | Monotonic func | tions have dis | continuity | of the se | cond kind. | | | | | ਸਹੀ | ਕਥਨ ਚੁਣੋ | | | | | | | | | (a) | ਹਰ ਸਧਾਰਨ ਰੇਖਾਬੱਥ | ਧ ਵਿਸਤਾਰ ਆਪ | ਰ ਵਿਚ ਸੰਬੰ | ਧਿਤ ਹੈ | | | | | | (b) | ਹਰ ਸੀਮਤ ਆਯਾਮੀ | ਰੇਖਾਬੱਧ ਖਲਾਅ | ਸੰਖਿਪਤ ਹੈ | | | | | | | (c) | ਹਰ ਦਸ਼ਮਿਕ ਵਿਸਤ | ਾਰ ਅਸੁਲਨ ਰੇਖਾਏ | ॉ प ਹੈ | | | | | | | (d) | ਇਕਸਾਰ ਫਲਨ ਦੁਸ | ਰੀ ਕਿਸਮ ਦੀ ਅ | ਨਿਰੰਤਰਤਾ ਕ | ਰੁੱਖਦੇ ਹਨ । | | | | | | ` , | • | | | | | | | | 80. | ıf İ. | $\vec{a} \times \vec{b} = \vec{a} \vec{b} $ tl | hen anole hetu | veen đ sna | d \vec{b} is | | | | | 00. | • | 0° - | (b) $\frac{\pi}{4}$ | (c) | _ | (d) | π | | | | (a) | | - | | L | (4) | | | | | ਜੇ | $\vec{a} \times \vec{b} = \vec{a} \vec{b} $ | ਫਿਰ \bar{a} ਅਤੇ b ਦੇ | ਦਗਮਅਨ | | | | | | | (a) | 0° | (b) $\frac{\pi}{4}$ | (c) | $\frac{\pi}{2}$ | (d) | π | | Ď | 81. | | \vec{b} , \vec{c} are unit vecto | | | | | | | č. ā is | |-------|--------------------------|---|---------------------|--------------------------------|---------------|--------------------------------|--------------|----------------------------|------------| | | (a) | $\frac{2}{3}$ | (b) | $-\frac{2}{3}$ | (c) | 3 2 | (d) | $-\frac{3}{2}$ | | | , | | \vec{b} , \vec{c} ਇਕਾਈ ਵੈਕਟਰ | | • | | _ | | ~ | | | | (a) | _ | | | | $\frac{3}{2}$ | | | | | 82. | The | orea of the | 11 | al | 1 | 3: 1_ | _ • | 1 | • | | 04. | | area of the $\vec{j} - 2\vec{k}$ and $\vec{i} - 3\vec{k}$ | | | vnose | diagonais are | give | n by the | vectors | | | | $10\sqrt{3}$ | - | | (c) | 3 | (d) | 5 | | | • | ਦਮਾਂਤ | ਰ ਚਰੁਰਭੁਜ ਦਾ ਖੇਤਰ | ਨਾ
ਫ਼ਲ ਹੈ। | ੱਚ
ਜਿਸ ਦੇ ਵਿਕਰ | (ਦ)
Iਨ 37⊤ | - ਹੋ
+ ਹੋ – 2 ਫ਼ੈਂ ਅਤੇ ਹੈ – | (u)
- 37± | ਹ
4ੋਂ ਟੈਕਟਰਾਂ ਜ | ਅਮਰਾ ਤਿੱਤੇ | | | ਗਏ ਹ | ਨ
ਨ | 0(,) 0 | mar e resid | ,, J. | ry za no t | 3) 1 | The Edico. | M.O. 162 | | | (a) | 10√3 | (b) | 5√3 | (c) | 3 | (d) | 5 . | | | | | | | | | | | | _ | | 83. | | value of $\vec{a} \times (\vec{b})$ | - | | | • • | | | | | | | $2[\vec{a}\vec{b}\vec{c}]$ | | | | | (d) | $3[\vec{a}\vec{b}\vec{c}]$ | | | | $\vec{a} \times \vec{a}$ | $(\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c})$ | $\times \vec{a}) +$ | $+\vec{c}\times(\vec{a}\times$ | $ec{b})$ ਦਾ | `ਮੁੱਲ ਹੈ | | • . | | | | (a) | $2[\vec{a}\vec{b}\vec{c}]$ | (b) | $\vec{0}$ | (c) | $[\vec{a} \vec{b} \vec{c}]$ | (d) | $3[\vec{a}\vec{b}\vec{c}]$ | • | | 84. | The | dimension of the | vecto | or space R | of all | l real numbers o | ver th | e field Q o | f rational | | - | | 0 | (b) | 1 | (c) | .2 | (d) | infinite | | | | ਪਰਿਮੇ | ਯ ਸੰਖਿਆਵਾਂ ਦੇ ਖੇਤਰ | Q g | ਪਰ ਅਸਲ ਸੰਪਿ | ਡਆਵਾਂ | ਦੇ ਵੈਕਟਰ ਵਿਸਤਾਰ I | | | | | | (a) | 0 | (b) | 1 | (c) | 2 | (d) | ਅਸੀਮ | | | 85. | If A | is a square matrix | such (| hat Δ ² = Δ | then l | ∆ <u>=</u> | | | | | | | 0 or 1 | (b) | 0 | • | ոլ –
1 | (d) | -1 | • | | | ने A | ਇੱਕ ਵਰਗਾਕਾਰ ਮੈਟਰਿ | | | | A = | (-) | | | | | (a) | 0 ਜਾਂ1 | (b) | 0 | (c) | 1 | (d) | -1 | • | | 86. | Chor | se the correct stat | am an t | • • | • | | | | | | 00. | (a) | Every square ma | | | | | | | | | | (b) | · - | | | x is al | ways non-zero m | atrix. | | | | | (c) | If a matrix A is s | ymme | tric as well | as ske | w symmetric ther | | a zero matriz | ٤. | | | (d) | Rank of a non-ze | ro ma | trix can be a | zero. | | | | | | | | ਸਥਨ ਚੁਣੋ
— — — ੈ | | 0 5 | | | | | | | | (a) | ਹਰ ਵਰਗਾਕਾਰ ਮੈਟਰਿ | | _ | | 0 3 5 | | | | | | (b) | ਦੋ ਗ਼ੈਰ-ਸਿਫ਼ਰ ਮੈਟਰਿ | | | | | | | _ | | | (c) | ਜੇਕਰ ਇੱਕ ਮੈਟਰਿਕਸ | I A sy | ymmetric w | ਤੇ sk | ew symmetric ਹੈ | ਤਾਂ A | ਇੱਕ ਸਿਫ਼ਰ ਮੈ | ਟਿਰਿਕਸ ਹੈ | | | (d) | ਇੱਕ ਗੈਰ-ਸਿਫ਼ਰ ਮੈਟ | । वळम | रः स्वनः गमः | ਫਰ ਹੈ 1 | ਸਕਦਾਹ। | | | | | Paper | -II (M | aths) | | | 18 | | | | Đ | | 87. | Cho | ose the correct sta | temen | nt: | | | | | | |------------|---|--|----------------|-----------------|---------|---------------------|---------|---------------------------|--| | | (a) | Every inner proc | luct sp | pace is a nor | med l | inear space. | | | | | | (b) | Every orthonorn | nal set | is linearly i | ndepe | endent. | | | | | | (c) | The eigen value | s of a | Hermitian m | natrix | are all real. | , | | | | | (d) | All the eigen val | ues o | f a positive o | definit | e quadratic form | are zei | roes. | | | | ਸਹੀ | ਕਥਨ ਚੁਣੋ : | | | - | | | | | | | (a) | ਹਰ ਅੰਤਰੀਮ ਗੁਣਨ | ਫ਼ਲ ਵਿ | ਸਤਾਰ ਸਧਾਰਨ | ਰੇਖਾਬੱਧ | ਸ ਵਿਸਤਾਰ ਹੈ। | | | | | | (b) ਹਰ orthonormal ਸੈੱਟ ਰੇਖਾਬੱਧ ਸੁਤੰਤਰ ਹੈ
(c) Hermitian ਮੈਟਰਿਕਸ ਦੇ eigen ਮੁੱਲ ਅਸਲ ਹਨ | (d) ਇੱਕ ਨਿਸ਼ਚਿਤ ਧਨਾਤਮਕ ਵਰਗਾਕਾਰ ਰੂਪ ਦੇ ਸਾਰੇ eigen ਮੁੱਲ ਸਿਫ਼ਰ ਹਨ । | | | | | | | | | | • | | | | • | | | | | | | 88. | The | distance between | the lir | 1 = 3x + 4y = 0 | = 9 an | d 6x + 8y = 15 is | | | | | , | (a) | 5 | (b) | 3 | (c) | 3 11 | (d) | 5 | | | | | ਵਾਂ $3x + 4y = 9$ ਅਤੇ | | | | | | | | | | | 6 5 | | | | | (d) | 5 | | | | (4) | 5 | (0) | 10 | (0) | 11 | (-) | | | | 89. | The | equation of the lir | ne para | allel to X-ax | is and | bisecting the join | of (1 | ,4) and (-2, 6) is | | | | (a) | y = 5 | _ | y + 5 = 0 | | | | x = 3 | | | | X-az | kis ਦੇ ਸਮਾਨਾਂਤਰ ਅਤੇ | (1,4) | ਅਤੇ (–2,6) | ਦੇ ਜੋੜ | ਨੂੰ ਕੱਟਣ ਵਾਲੀ ਰੇਖਾ | ਦੀ ਸਮੀ | ਕਿਰਨ ਹੈ: | | | | | y = 5 | | y + 5 = 0 | | _ | | x = 3 | | | | <u> </u> | | ` ' | | ` ' | | () | | | | 90. | The | circle $x^2 + y^2 + 4x$ | c – 7y | +12=0 cu | ts an i | ntercept on Y-axi | s equa | ıl to | | | | (a) | 3 | (b) | 1 | (c) | 2 | (d) | 7 | | | | ਚੁੱਕਰ | $x^2 + y^2 + 4x - 7y$ | + 12 | = 0 ਇੱਕ inte | ercept | ਨੂੰ Y-axis ਉੱਪਰ ਕੱ | ਟਦਾ ਹੈ, | ਬਰਾਬਰ ਹੈ : | | | | (a) | 3 | (b) | 1 | (c) | 2 | (d) | 7 | | | | | | | 1 | | | | · | | | 91. | | number of tangen
-2) is | ts to t | he circle x^2 | + y² - | 8x - 6y + 9 = 0 v | vhich | pass through the point |
 | | (a) | | (b) | 1 | (c) | 2 | (d) | | | | | | $x^2 + y^2 - 8x - 6y$
ਦੀਆਂ ਹਨ, ਹੈ : | 7 + 9 = | = 0 ਨੂੰ ਸਪਰਾ | ਸ਼ ਕਰਟੋ | ਹੇ ਗੁਜ਼ਰਦੀਆਂ ਲਕੀਰਾਂ | ਦੀ ਗਿ | ਣਤੀ, ਜੋ ਬਿੰਦੂ (3, –2) ਤੋਂ | | | | (a) | 0 | (b) | 1 | (c) | 2. | (d) | 4 | | | | | | | | | | | | | | yz. | i ne strai | ignt time x + | <i>y</i> – | t touches in | e hara | 001a y - x - x | 11 1 12 | equal to | |-----|-----------------------|---------------------------------------|------------|---------------------|-------------------------------|------------------------|----------------|-----------------------| | | (a) 0 | | (b) | 1 | (c) | -1 | (d) | 2 | | | ਸਿੱਧੀ ਰੇਖਾ | x + y = l | ਪੈਰਾਬੋਨ | ਲਾ $y = x -$ | x² ਨੂੰ | ਸਪਰਸ਼ ਕਰਦੀ ਹੈ ਜੇਕ | र ਰ । ਬ | ਰਾਬਰ ਹੋਵੇ | | | (a) 0 | | (b) | 1 | (c) | -1 | (d) | 2 | | | | | | | | | | | | 93. | Sum of t | the focal distar | nces o | f an ellipse | $\frac{x^2}{4} + \frac{y}{4}$ | $\frac{v^2}{5} = 1$ is | | | | | (a) 4 | | (b) | 5 | (c) | 8 | (d) | 10 | | | ਇੱਕ ਅੰਡਾ | ਕਾਰ $\frac{x^2}{4} + \frac{y^2}{5} =$ | = 1 ਦੀ | ਆਂ ਮੁੱਖ ਦੂਰੀਆ | ਆਂ ਦਾ ਜੋ | ਜੇੜ ਹੈ | | | | | (a) 4 | | (b) | 5 | (c) | 8 | (d) | 10 | | 94. | The ecce | entricity of the | conic | $2x^2 - 2x - 4$ | $y^2 = 0$ | is | | | | | | · | | | | | (d) | <u>1</u> | | | 2 | | | 4 | | 2 | (u) | 8 | | | | $x^2 - 2x - 4y^2$ | | | | Œ | | | | ٠, | (a) $\frac{3}{2}$ | | (b) | √ 5
4 | (c) | $\frac{\sqrt{5}}{2}$ | (d) | 1 8 | | | | | | | | | | | | 95. | The dist | ance of the po | int (3, | 4, 5) from y | y-axis | is | | | | | (a) 3 | | (b) | 5 | (c) | $\sqrt{34}$ | (d) | 4 | | • | ਬਿੰਦੂ (3, 4 | 1, 5) ਦੀ y-ਅਕਸ਼ | ਾਂਸ਼ ਤੋਂ | ਦੂਰੀ ਹੈ | | | | | | ٠ | (a) 3 | | (b) | 5 | (c) | √34 | (d) | 4 | | | • | | | · | | | | | | 96. | The ang | le between the | lines | x = 1, y = 2 | and y | z = -1, $z = 0$ is | | • • | | | (a) 0° | _ | = | 30° | (c) | 60° | (d) | 90° | | | ਰੇਖਾਵਾਂ x | = 1, y = 2 ਅਤੇ | - | | * | | | | | | (a) 0° | • | (b) | 30° | (c) | 60° | (d) | 90° | | | • | | | - | | | | | | 97. | | ht line which
t an angle | make | es an angle | of 60 | o with each of Y | and | Z-axis, inclines with | | | (a) $\frac{\pi}{4}$ | | (b) | $\frac{\pi}{6}$ | (c) | $\frac{\pi}{2}$ | (d) | $\frac{3\pi}{4}$ | | ÷ | ਇੱਕ ਸਿੱਧੀ
ਝੁਕਦੀ ਹੈ | | | - | | _ | | X-axis ਨਾਲ ਇਸ ਕੋਣ ਤੇ | | | - π | | (h) | $\frac{\pi}{6}$ | (a) | <u>π</u> | (A) | 3π | | | (a) $\frac{\pi}{4}$ | | (U) | 4 | (4) | 3 | (d) | 4 | | | | | | | | • | | | |---------------------------------------|------|--|-------------|-----------------|----------|--------------------|------------|--------------------------| | | | | | | | | | | | 98. | The | angle between th | e plan | es $2x - v + z$ | z = 6 a | and $x + y + 2z =$ | = 7 is | | | | | $\frac{2\pi}{3}$ | | <u> -</u> | | | (d) | $\frac{\pi}{2}$ | | | | 3
2x − y + z = 6 ਅਤੇ | | - | | T . | | 3 | | | | $\frac{2\pi}{3}$ | | | | | (d) | $\frac{\pi}{3}$ | | 9 9. | | projection of the ats (-1, 2, 4) and (| | | oints | (3, 4, 5) and (4 | 4, 6, 3) (| on the line joining the | | • | (a) | 4 3 | (b) | $\frac{2}{3}$ | (c) | 1 3 | (d) | $\frac{1}{2}$ | | | (-1, | _ | : | | | _ | ਤੇ (4, 6, | 3) ਬਿੰਦੂਆਂ ਨੂੰ ਜੋੜਨ ਵਾਲੀ | | # . :
- : | (a) | 4 3 | (b) | 2 3 | (c) | 1 3 | (d) | 1 2 | | 100. | The | principal value o | f the a | mplitude of | 1 + i i | s | | | | | (a) | π | (b) | $\frac{\pi}{4}$ | (c) | $\frac{3\pi}{4}$ | (d) | $\frac{\pi}{6}$ | | | 1+ | i ਦੇ amplitude ਦਾ | भुंध भूष | ਨ ਹੈ | | | | | | | (a) | π | (b) | $\frac{\pi}{4}$ | (c) | $\frac{3\pi}{4}$ | (d) | $\frac{\pi}{6}$ | | 101 | The | complex number | 7 = vi- | + iv eatiefvi | na lz -l | - 1) = 1 lie on | | | | | | X-axis | · | | -, - | | (d) | ellipsoid | | : " | | 1 =1 ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਾ | | | • • • | | (-) | | | | | X-axis 'ਤੇ | | _ | | | (d) | ਅੰਡਾਕਾਰ ਅਕਾਰ 'ਤੇ | | | | | | | | | - | | | 102. | | inequality z - 4 | | | | | | | | .* | | | | | | Re(z) > 3 | (d) | Re(z) < 2 | | | | 4 < z − 2 ਦੀ ਅਸ | | | : | - | | | | | (a) | Re(z) > 0 | (b) | Re(z) < 0 | (c) | Re(z) > 3 | (d) | Re(z) < 2 | | 103. | A va | alue of $\sqrt{i} + \sqrt{-i}$ | is : | | | | | | | | (a) | 0 | (b) | $\sqrt{2}$ | (c) | i | (d) | -i | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | √i + | - <i>√—i</i> ਦਾਮੁਲ ਹੈ: | | | | | | | | | (a) | 0 | (b) | $\sqrt{2}$ | (c) | i | (d) | | | D | | | | . • | 21 | | | Paper-II (Maths) | | r) | - | | | | | | | · | | 104. | If z = | = 1 + i, then the m | ultipli | cative inver | se of z | ² is | | | |------|--------|---|--------------------|--|----------------|-----------------------------------|-------------|-------------------| | | (a) | 1-i | (b) | $\frac{i}{2}$ | (c) | $-\frac{i}{2}$ | (d) | 2i | | | ਜੇਕਰ | z = 1 + i ਹੈ ਤਾਂ ਫਿਰ | ਾ z² ਦ | ਾ ਗੁਣਕ ਉੱਲਟਾ | ਹੈ: | | | | | | (a) | 1-i | (b) | $\frac{i}{2}$ | (c) | $-\frac{i}{2}$ | (d) | 2 <i>i</i> | | | | | | | | -
- | | | | 105. | If on | e root of equation | ix^2 | -2(i+1)x | c + (2 | -i)=0 is 2-i, | then | the other root is | | | (a) | | • , | 2+i | | _ | ` ′ | 2-i | | | ਸਮੀਕ | ਰਨ $ix^2 - 2(i+1)$ | l)x + | (2-i)=0 |) ਦਾ ਇ | ਟੱਕ ਮੂਲ 2 − i ਹੈ ਤਾਂ | ਦੂਸਰਾ | वींगै ? | | | (a) | -i | (b) | 2+i | (c) | i | (d) | 2-i | | 106 | 774 | l£ aaa F39 . | | 70 aim E 70 | ain 2' | 7 0 ia | | | | 100. | | value of cos 53° o | | | | | (1) | <i>7</i> 5 | | | (a) | | | $\frac{1}{\sqrt{2}}$ | | 0 | (a) | $\sqrt{2}$ | | | cos 5 | 53° cos 37° – sin | 53° s | sin 37° ਦਾ ਮੁੰ | ਮੁੱਲ ਹੈ | | | | | | (a) | 1 | (b) | $\frac{1}{\sqrt{2}}$ | (c) | 0 | (d) | $\sqrt{2}$ | | | | | | | | | | | | 107. | If ta | $n A = \frac{1}{2} \text{ and } \tan B$ | $=\frac{1}{3}$, 1 | then the valu | ie of A | A + B is | | | | | (a) | $\frac{\pi}{6}$ | (b) | π | (c) | 0 | (d) | $\frac{\pi}{4}$ | | | ਜੇਕਰ | $\tan A = \frac{1}{2}$ ਅਤੇ \tan | n <i>B</i> = | $\frac{1}{3}$ ਤਾਂ A + E | 3 ਦਾ ਮੁੱ≀ | ਲ ਹੈ : | | • | | | (a) | $\frac{\pi}{6}$ | (b) | π | (c) | 0 | (d) | $\frac{\pi}{4}$ | | | | | | | | | | • | | 108. | If sir | $\alpha = \sin \beta$ and c | osα= | $=\cos\beta$, the | n | · | | | | ٠ | (a) | $\alpha = \beta$ | | | (b) | $\alpha + \beta = 0$ | | | | | (c) | $\alpha = \pm \beta$ | | | (d) | $\alpha=2n\pi+\beta$, w | here : | n is any integer | | | ਜੇਕਰ | $\sin \alpha = \sin \beta$ | डे cos | $\alpha = \cos \beta$ | ਹੈ ਤਾਂ | | | | | | (a) | $\alpha = \beta$ | | | (b) | $\alpha + \beta = 0$ | | | | | (c) | $\alpha = \pm \beta$ | | | (d) | $\alpha = 2n\pi + \beta, \vec{h}$ | चिn वे | ਹੋਈ ਅੱਖਰ ਹੈ । | | | | , | | | | | | , T | | 109. | | ch one of the follo | _ | | - | _ | . 10 | ; | | | (a) | sin z
Vhor f aži forz a | (b) | <i>Ī</i>
[2002 2015 21 6 | (c) | z ² | (d) | xy + iy | | | OO I | ਲੇਖਿਆ ਵਿਚੋਂ ਕਿਹੜਾ | ලෙර | IE 4049.214 | וסג ט | ţ | | * | (a) $\sin z$ (c) $|z|^2$ (d) (b) ī | 110. | 700 | | | | | | | | |------|---|--|--|---|--|--|--|--| | | If C | is the contour z = | = 1, th | en the value | of ∫ _C | $\cos z dz$ is | | | | | (a) | 1 | (b) | 0 | (c) | 2πί | (d) | 2π | | | ਜੇਕਰ | C contour $ z = 1$ | ਹੈ ਤਾਂ ∫ | $c \cos z dz$ | ਦਾ ਮੁੱਲ | ਹੈ: | | | | | (a) | 1 | (b) | 0 | (c) | 2πί | (d) | 2π | | 111. | Resi | due of $\frac{\cos z}{z}$ at $z =$ | 0 is | · | | | | | | | (a) | 0 | (b) | 1 | (c) | 2 | (d) | 3 | | | z = 0 |) ਉਪੱਰ $\frac{\cos z}{z}$ ਹੈ : | | | • | | | | | | (a) | 0 | (b) | 1 | (c) | 2 | .(d) | 3 | | 112. | | nction which is a | nalyti | c and bound | ded in | the whole comp | lex pl | ane must reduce to a | | | (a) | Cauchy theorem | | | (b) | Liouville's theore | em | | | | (c) | Schwarz lemma | | | | Open mapping th | | | | | | ਫਲਨ ਜੋ ਵਿਸ਼ਲੇਸ਼ਣਾਤ
ਖ਼ਵਾਉਂਦਾ ਹੈ | ਮਿਕ ਹੈ | ਾ ਅਤੇ ਪੂਰਨ ਜ | ਲਿਟ ਪ | ਲੇਨ ਨਾਲ ਸੰਗਠਿਤ ਹੈ | , ਜ਼ਰੂਰ | ੀ ਤੌਰ 'ਤੇ ਨਿਰੰਤਰ ਘਟਦਾ | | | (a) | Cauchy theorem | | | (b) | Liouville's theore | em | | | | (c) | Schwarz lemma | | | (d) | Open mapping th | eoren | n | | 113. | The | total number of co | mbin | ation of n di | fferent | things taken 1, 2, | , 3, | , n at a time is | | | (a) | | | | | | | | | | (a) | 2 ⁿ | (0) | 2 1 1 | (-) | 2^n-1 | (4) | 4 | | | • • | ਂ 2"
ੁੱਲ n ਵਸਤੂਆਂ ਦੇ ਇੱ | - | | | | | | | | • • | | ਕੋ ਸਮੇਂ | ਲਏ ਗਏ 1,2 | , 3, | | ਸੰਖਿਅ | ਾ ਹੈ | | 114. | ਗਏ ਰ੍
(a) | ਲੱਲ n ਵਸਤੂਆਂ ਦੇ ਇੱ
2 ⁿ | ਕੋ ਸਮੇਂ
(b) | ਲਏ ਗਏ 1,2
2 ⁿ +1 | , 3,
(c) | , n ਸੰਯੋਜਨਾਂ ਦੀ ਕੁੱਲ
2 ⁿ – 1 | ਸੰਖਿਅ
(d) | ਾ ਹੈ
2 ^{⊓–1} | | 114. | ਗਏ ਰ੍
(a) | ਲੱਲ n ਵਸਤੂਆਂ ਦੇ ਇੱ
2 ⁿ | ਕੋ ਸਮੇਂ
(b) | ਲਏ ਗਏ 1,2
2 ⁿ +1 | , 3,
(c) | , n ਸੰਯੋਜਨਾਂ ਦੀ ਕੁੱਲ
2 ⁿ – 1 | ਸੰਖਿਅ
(d) | ਸਾ ਹੈ
2 ^{n–1}
can be answered is | | 114. | ਗਏ ਰ
(a)
Ther
(a) | ਼ੱਲ n ਵਸਤੂਆਂ ਦੇ ਇੱ
2 ⁿ
e are 10 true-false | ਕੋ ਸਮੇਂ
(b)
quest
(b) | ਲਏ ਗਏ 1, 2
2 ⁿ + 1
ions. The m
10 | , 3,
(c)
amber
(c) | , n ਸੰਯੋਜਨਾਂ ਦੀ ਕੁੱਲ
2 ⁿ – 1
of ways in which
20 | ਸੰਖਿਆ
(d)
they (
(d) | ਧਾ ਹੈ
2 ^{n–1}
can be answered is
10 ² | | 114. | ਗਏ ਰ
(a)
Ther
(a) | ਲੱਲ n ਵਸਤੂਆਂ ਦੇ ਇੱ
2 ⁿ
e are 10 true-false
2 ¹⁰
ਹੀ−ਂਗ਼ਲਤ ਪ੍ਰਸ਼ਨ ਹਨ | ਕੋ ਸਮੇਂ
(b)
quest
(b) | ਲਏ ਗਏ 1, 2
2 ⁿ + 1
ions. The m
10
ਾਂ ਦਾ ਉਤੱਰ ਜਿੰ | , 3,
(c)
amber
(c) | , n ਸੰਯੋਜਨਾਂ ਦੀ ਕੁੱਲ
2 ⁿ – 1
of ways in which
20 | ਸੰਖਿਆ
(d)
they
(
(d) | ਸਾ ਹੈ
2 ^{n–1}
can be answered is
10 ²
ਹ ਹਨ | | | 可之 (a) Ther (a) 10 円 (a) The | ਲੱਲ n ਵਸਤੂਆਂ ਦੇ ਇੱ
2 ⁿ
e are 10 true-false
2 ¹⁰
ਹੀ−ਂਗ਼ਲਤ ਪ੍ਰਸ਼ਨ ਹਨ
2 ¹⁰ | ਕੋ ਸਮੇਂ
(b)
quest
(b)
। ਉਹਨ
(b)
whic | ਲਏ ਗਏ 1, 2
2 ⁿ + 1
ions. The m
10
ਾਂ ਦਾ ਉਤੱਰ ਜਿੰ
10
h can be ma | , 3,
(c)
mber
(c)
ਨੇ ਢੰਗਾਂ
(c) | , n ਸੰਯੋਜਨਾਂ ਦੀ ਕੁੱਲ
2 ⁿ – 1
of ways in which
20
ਨਾਲ ਦਿੱਤਾ ਜਾ ਸਕਦ
20 | ਸੰਖਿਆ
(d)
they (
(d)
ਾ ਹੈ ਉਹ
(d) | ਸਾ ਹੈ
2 ^{n–1}
can be answered is
10 ²
ਹ ਹਨ | | | 可之 (a) Ther (a) 10 円 (a) The | ਲੱਲ n ਵਸਤੂਆਂ ਦੇ ਇੱ
2 ⁿ
e are 10 true-false
2 ¹⁰
ਹੀ−ਂਗ਼ਲਤ ਪ੍ਰਸ਼ਨ ਹਨ
2 ¹⁰
number of words | ਕੋ ਸਮੇਂ
(b)
quest
(b)
। ਉਹਨ
(b)
whic | ਲਏ ਗਏ 1, 2
2 ⁿ + 1
ions. The nu
10
ਾਂ ਦਾ ਉਤੱਰ ਜਿੰ
10
h can be ma
laces is | , 3,
(c)
mber
(c)
ਨੇ ਢੰਗਾਂ
(c) | , n ਸੰਯੋਜਨਾਂ ਦੀ ਕੁੱਲ
2 ⁿ – 1
of ways in which
20
ਨਾਲ ਦਿੱਤਾ ਜਾ ਸਕਦ
20
at of the letters of | ਸੰਖਿਆ
(d)
they (
(d)
ਾ ਹੈ ਉਹ
(d) | r ਹੈ
2 ⁿ⁻¹
can be answered is
10 ²
ਹ ਹਨ
10 ²
word MOBILE when | | | 可它 (a) Ther (a) 10 用 (a) The vowe (a) MOI | ਲੱਲ n ਵਸਤੂਆਂ ਦੇ ਇੱ
2 ⁿ
e are 10 true-false
2 ¹⁰
ਹੀ−ਗ਼ਲਤ ਪ੍ਰਸ਼ਨ ਹਨ
2 ¹⁰
number of words
els always occupy
20 | ਕੋ ਸਮੇਂ
(b)
quest
(b)
(b)
which
odd p
(b)
ਨੇ ਅੱਖ | ਲਏ ਗਏ 1, 2 2 ⁿ + 1 ions. The mu 10 i ਦਾ ਉਤੱਰ ਜਿੰ
10 h can be ma
laces is 36 ਰ ਹਨ ਉਹਨਾਂ | , 3,
(c)
umber
(c)
ਨੇ ਢੰਗਾਂ
(c) | , n ਸੰਯੋਜਨਾਂ ਦੀ ਕੁੱਲ
2 ⁿ – 1
of ways in which
20
ਨਾਲ ਦਿੱਤਾ ਜਾ ਸਕਦ
20
It of the letters of | ਸੰਖਿਆ
(d)
they c
(d)
ਾ ਹੈ ਉਹ
(d)
f the v | r ਹੈ
2 ⁿ⁻¹
can be answered is
10 ²
ਹ ਹਨ
10 ²
word MOBILE when | | 116. | The | number of lines d | rawn t | hrough 6 pe | oints ly | ying on a circle is | | | |------|---|---|--|---|---|---|---|-------------------------------------| | | (a) | 12 | (b) | 15 | (c) | 24 | (d) | 30 | | | ਇੱਕ | ਘੇਰੇ ਉਪਰ ਬਣੇ 6 ਬਿੰਜ੍ | ਟੂਆਂ ਰਾ | ਹੀਂ ਕਿੰਨੀਆ | ਰੇਖਾਵਾਂ ' | ਖਿੱਚੀਆਂ ਗਈਆਂ ਹਨ | ? | | | | (a) | 12 | (b) | 15 | (c) | 24 | (d) | 30 | | | | | | | | | | | | 117. | How | many 10 digit nu | mber | can be writ | ten by | using the digit 1 | and 2 ' | ? | | | (a) | 210 | | 10 ² | (c) | | (d) | 20 | | | ਅੰਕ | 1 ਅਤੇ 2 ਦਾ ਇਸਤੇਮ | ਾਲ ਕਰ | ਦਿਆਂ ਹੋਇਆਂ | ਕਿੰਨੇ 1 | 0 ਅੱਖਰੇ ਨੰਬਰ ਬਣਾਏ | ते म | ਕਦੇ ਹਨ | | | (a) | 210 | (b) | 10 ² | (c) | 10 | (d) | 20 | | | | | | | | | | · | | 118. | The | number of ways i | n whic | ch n distinc | t objec | ts can be put into | three | different boxes is | | | (a) | 3n | (b) | 3 ⁿ | (c) | | ` ' | 3^n-1 | | | n ₹F | ਜਤੂਆਂ ਨੂੰ ਤਿੰਨ ਵੱਖ−ਂ | ਵੱਖ ਡੱਬਿ | ਬਿਆਂ ਵਿਚ ਕਿੰ | ਨੇ ਤਰੀ | ਕੇਆਂ ਨਾਲ ਪਾਇਆ ਜ | ਜਾ ਸਕਦ | ਾਹੈ ? | | | (a) | 3n | (b) | 3 ⁿ | (c) | n ³ | (d) | 3^n-1 | | | | | | | . • | | | | | 119. | | e factoring of any | / integ | ger n into p | orimes | is unique apart | from t | he order of the prime | | | | | | | | | | | | | (a) | Prime number t | heorer | n | (b) | Fundamental T | heoren | n of arithmetic | | | (c) | Fundamental the | eorem | of algebra | (d) | Chinese remain | der the | eorem | | | (c) | | eorem | of algebra | (d) | Chinese remain | der the | eorem | | | (c) | Fundamental the | eorem
ਬਿਨੂੰ ਛੰ | of algebra | (d)
ਰਿਨ ਅੰਕ | Chinese remain | der the
ਹਵਾਂ ਵੰਡ | eorem | | | (c)
ਅਭਾ | Fundamental th
ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ | eorem
lਬ ਨੂੰ ਛੇ
ਤ | of algebra
šੱਡ ਕੇ ਕਿਸੇ ਪੂ | (d)
ਹਰਨ ਅੰਕ
(b) | Chinese remain
ਕ n ਨੂੰ ਅਭਾਜ ਸੰਖਿਅ | der the
ਾਵਾਂ ਵੰਛ
ਸਿਧਾਂਤ | eorem
ਹਣਾ ਵਿਲੱਖਣ ਹੈ | | | (c)
ਅਭਾ
(a) | Fundamental the
ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ
Prime ਨੰਬਰ ਸਿਧਾਂ | eorem
lਬ ਨੂੰ ਛੇ
ਤ | of algebra
šੱਡ ਕੇ ਕਿਸੇ ਪੂ | (d)
ਹਰਨ ਅੰਕ
(b) | Chinese remain
ਕ n ਨੂੰ ਅਭਾਜ ਸੰਖਿਅ
ਗਣਿਤ ਦਾ ਮੌਲਿਕ 1 | der the
ਾਵਾਂ ਵੰਛ
ਸਿਧਾਂਤ | eorem
ਹਣਾ ਵਿਲੱਖਣ ਹੈ | | 120. | (c)
ਅਭਾ
(a)
(c) | Fundamental the
ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ
Prime ਨੰਬਰ ਸਿਧਾਂ | eorem
lਬ ਨੂੰ ਛੇ
ਤ
ਕ ਸਿਧਾਂ | of algebra
కੱਡ ਕੇ ਕਿਸੇ ਪੂ
ਤ | (d)
ਰਿਨ ਅੰਕ
(b)
(d) | Chinese remain
ਕ n ਨੂੰ ਅਭਾਜ ਸੰਖਿਅ
ਗਣਿਤ ਦਾ ਮੌਲਿਕ 1 | der the
ਾਵਾਂ ਵੰਛ
ਸਿਧਾਂਤ | eorem
ਹਣਾ ਵਿਲੱਖਣ ਹੈ | | 120. | (c)
ਅਭਾ
(a)
(c) | Fundamental th
ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ
Prime ਨੰਬਰ ਸਿਧਾਂ
ਅਲਜਬਰੇ ਦਾ ਮੋਲਿਟ | eorem
lਬ ਨੂੰ ਛੇ
ਤ
ਕ ਸਿਧਾਂ | of algebra
కੱਡ ਕੇ ਕਿਸੇ ਪੂ
ਤ | (d)
ਰਿਨ ਅੰਕ
(b)
(d) | Chinese remain
ਕ n ਨੂੰ ਅਭਾਜ ਸੰਖਿਅ
ਗਣਿਤ ਦਾ ਮੌਲਿਕ i
ਚੀਨੀ ਦੀ Remain | der the
ਾਵਾਂ ਵੰਛ
ਸਿਧਾਂਤ | eorem
ਤਣਾ ਵਿਲੱਖਣ ਹੈ
ਪਾਂਤ | | 120. | (c)
対ぎで
(a)
(c)
The
(a) | Fundamental the
ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ
Prime ਨੰਬਰ ਸਿਧਾਂ
ਅਲਜਬਰੇ ਦਾ ਮੋਲਿਟ
number of primit | eorem
lਬ ਨੂੰ ਛੇ
ਤ
ਕ ਸਿਧਾਂ
ive ro
(b) | of algebra
ਝੱਡ ਕੇ ਕਿਸੇ ਪੂ
ਤ
ots of 13 an
2 | (d)
 ਰਨ ਅੰਕ
(b)
(d) | Chinese remain
ਕ n ਨੂੰ ਅਭਾਜ ਸੰਖਿਅ
ਗਣਿਤ ਦਾ ਮੌਲਿਕ i
ਚੀਨੀ ਦੀ Remain | der the
ਸਵਾਂ ਵੰਛ
ਸਿਧਾਂਤ
nder ਸਿ | eorem
ਤਣਾ ਵਿਲੱਖਣ ਹੈ
ਪਾਂਤ | | 120. | (c)
対ぎで
(a)
(c)
The
(a) | Fundamental the ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ Prime ਨੰਬਰ ਸਿਧਾਂ ਅਲਜਬਰੇ ਦਾ ਮੋਲਿਟ number of primit l ਦੇ ਮੁੱਢਲੇ ਮੂਲਾਂ ਦੀ ਗਿਲ | eorem
lਬ ਨੂੰ ਛੇ
ਤ
ਕ ਸਿਧਾਂ
ive ro
(b) | of algebra
ਝੱਡ ਕੇ ਕਿਸੇ ਪੂ
ਤ
ots of 13 an
2 | (d)
 ਰਨ ਅੰਕ
(b)
(d) | Chinese remain
ਕ n ਨੂੰ ਅਭਾਜ ਸੰਖਿਅ
ਗਣਿਤ ਦਾ ਮੌਲਿਕ i
ਚੀਨੀ ਦੀ Remain | der the
ਸਵਾਂ ਵੰਛ
ਸਿਧਾਂਤ
nder ਸਿ | eorem
ਤਣਾ ਵਿਲੱਖਣ ਹੈ
ਪਾਂਤ | | | (c)
対ぎで
(a)
(c)
The
(a)
13 で
(a) | Fundamental the ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ Prime ਨੰਬਰ ਸਿਧਾਂ ਅਲਜਬਰੇ ਦਾ ਮੋਲਿਟ
number of primit
l
ਦੇ ਮੁੱਢਲੇ ਮੂਲਾਂ ਦੀ ਗਿਟ | eorem
lਬ ਨੂੰ ਛੋ
ਤ
x ਸਿਧਾਂ
(b)
ਣਤੀ ਹੈ:
(b) | of algebra
ਝੱਡ ਕੇ ਕਿਸੇ ਪੂ
ਤ
ots of 13 ar
2 | (d)
 ਰਨ ਅੰਕ
(b)
(d)
e
(c) | Chinese remain
x n ਨੂੰ ਅਭਾਜ ਸੰਖਿਅ
ਗਣਿਤ ਦਾ ਮੌਲਿਕ
ਚੀਨੀ ਦੀ Remain
3 | der tho
ਸਵਾਂ ਵੰਛ
ਸਿਧਾਂਤ
nder ਸਿ
(d) | eorem
ਤਣਾ ਵਿਲੱਖਣ ਹੈ
ਪਾਂਤ
4 | | | (c)
対ぎで
(a)
(c)
The
(a)
(a) | Fundamental the ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ Prime ਨੰਬਰ ਸਿਧਾਂ ਅਲਜਬਰੇ ਦਾ ਮੋਲਿਕ number of primit l ਦੇ ਮੁੱਢਲੇ ਮੂਲਾਂ ਦੀ ਗਿਕ | eorem
lਬ ਨੂੰ ਛੇ
ਤ
x ਸਿਧਾਂ
(b)
ਣਤੀ ਹੈ:
(b) | of algebra
ਝੱਡ ਕੇ ਕਿਸੇ ਪੂ
ਤ
ots of 13 ar
2
2
tions of 15 | (d)
 ਰਨ ਅੰਗ
(b)
(d)
e
(c)
(c) | Chinese remain
x n ਨੂੰ ਅਭਾਜ ਸੰਖਿਆ
ਗਣਿਤ ਦਾ ਮੌਲਿਕ
ਚੀਨੀ ਦੀ Remain
3
3
(mod 35) are | der the
ਸਵਾਂ ਵੰਡ
ਸਿਧਾਂਤ
nder ਸਿ
(d) | eorem
ਤਣਾ ਵਿਲੱਖਣ ਹੈ
ਪਾਂਤ
4 | | | (c)
対容で
(a)
(c)
The
(a)
(a)
The
(a) | Fundamental the ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ Prime ਨੰਬਰ ਸਿਧਾਂ ਅਲਜਬਰੇ ਦਾ ਮੋਲਿਕ number of primit l ਦੇ ਮੁੱਢਲੇ ਮੂਲਾਂ ਦੀ ਗਿਕ l number of intege | eorem
lਬ ਨੂੰ ਛੋਂ
ਤ
x ਸਿਧਾਂ
(b)
ਵਤੀ ਹੈ:
(b)
r solut
(b) | of algebra
ਤੱਡ ਕੇ ਕਿਸੇ ਪੂ
ਤ
ots of 13 ard
2
:
2
tions of 15. | (d)
ਰਿਨ ਅੰਗ
(b)
(d)
e
(c)
x ≡ 24
(c) | Chinese remain x n ਨੂੰ ਅਭਾਜ ਸੰਖਿਆ ਗਣਿਤ ਦਾ ਮੌਲਿਕ ਹੈ ਚੀਨੀ ਦੀ Remain 3 (mod 35) are 2 | der tho
ਸਵਾਂ ਵੰਛ
ਸਿਧਾਂਤ
nder ਸਿ
(d) | eorem
ਤਣਾ ਵਿਲੱਖਣ ਹੈ
ਪਾਂਤ
4 | | | (c)
対容で
(a)
(c)
The
(a)
(a)
The
(a) | Fundamental the ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ Prime ਨੰਬਰ ਸਿਧਾਂ ਅਲਜਬਰੇ ਦਾ ਮੋਲਿਕ number of primit l ਦੇ ਮੁੱਢਲੇ ਮੂਲਾਂ ਦੀ ਗਿਕ | eorem
lਬ ਨੂੰ ਛੋਂ
ਤ
x ਸਿਧਾਂ
(b)
ਵਤੀ ਹੈ:
(b)
r solut
(b) | of algebra
ਤੱਡ ਕੇ ਕਿਸੇ ਪੂ
ਤ
ots of 13 ard
2
:
2
tions of 15. | (d)
ਰਿਨ ਅੰਗ
(b)
(d)
e
(c)
x ≡ 24
(c) | Chinese remain x n ਨੂੰ ਅਭਾਜ ਸੰਖਿਆ ਗਣਿਤ ਦਾ ਮੌਲਿਕ ਹੈ ਚੀਨੀ ਦੀ Remain 3 (mod 35) are 2 | der the
ਸਵਾਂ ਵੰਡ
ਸਿਧਾਂਤ
nder ਸਿ
(d) | eorem
ਤਣਾ ਵਿਲੱਖਣ ਹੈ
ਪਾਂਤ
4 | | | (c)
対容で
(a)
(c)
The
(a)
(a)
The
(a) | Fundamental the ਜ ਗੁਣਨਖੰਡ ਦੀ ਤਰਤੰ Prime ਨੰਬਰ ਸਿਧਾਂ ਅਲਜਬਰੇ ਦਾ ਮੋਲਿਕ number of primit l ਦੇ ਮੁੱਢਲੇ ਮੂਲਾਂ ਦੀ ਗਿਕ l number of intege | eorem
lਬ ਨੂੰ ਛੋਂ
ਤ
x ਸਿਧਾਂ
(b)
ਵਤੀ ਹੈ:
(b)
r solut
(b) | of algebra
ਤੱਡ ਕੇ ਕਿਸੇ ਪੂ
ਤ
ots of 13 ard
2
:
2
tions of 15. | (d)
ਰਿਨ ਅੰਗ
(b)
(d)
e
(c)
x ≡ 24
(c) | Chinese remain x n ਨੂੰ ਅਭਾਜ ਸੰਖਿਆ ਗਣਿਤ ਦਾ ਮੌਲਿਕ ਹੈ ਚੀਨੀ ਦੀ Remain 3 (mod 35) are 2 | der the
ਸਵਾਂ ਵੰਡ
ਸਿਧਾਂਤ
nder ਸਿ
(d) | eorem
ਤਣਾ ਵਿਲੱਖਣ ਹੈ
ਪਾਂਤ
4 | | | 122. | Which one of the following is incorrect? | | | | | | | | | | | |---|------|---|--|----------------------------|-------------------------------|--|----------------------------|---------------------|-----------------|--|--|--| | | | (a) | Every subgroup | of an abelian | group is a | belian | | | | | | | | | | (b) | Every cyclic grou | | | | | | | | | | | | | (c) | Every subgroup | of a non-abel | ian group | is non-abelia | n | | | | | | | | | (d) | If every element | | | | | abelian | | | | | | | | ਹੇਠ ਨਿ | ਨੁਖਿਆਂ ਵਿ ਹ ੋਂ ਕਿਹੜਾ | | | | - - . | | | | | | | | | (a) | ਇੱਕ Abelian ਸਮੂਹ | | Abelian | ਹੈ | | | | | | | | | | (b) ਹਰੇਕ ਗੋਲਾਕਾਰ ਸਮੂਹ Abelian ਹੈ | | | | | | | | | | | | | | (c) | | | | | | | | | | | | | | (d) | ਜੇਕਰ ਇੱਕ ਸਮੂਹ ਦਾ | ਹਰੇਕ ਅੱਖਰ ਹਿ | ਏਸਦਾ ਆਪਣ | ਾ ਉਲਟ ਹੈ ਤਾਂ 1 | ਇਹ ਸਮੂਹ A | belian ਹੈ | | | | | | | 123. | Whic | h one of the follo | wing is true (| ? | | | | | | | | | | | | A permutation is | _ | | • | | | - | | | | | | | | The symmetric g | | | | | | | | | | | | | (c) A ₅ has 120
elements | | | | | | | | | | | | | | (d) | (d) Every factor group of non-abelian group is non-abelian | | | | | | | | | | | | | | ਹੇਠ ਲਿਖਿਆਂ ਵਿੱਚੋਂ ਕਿਹੜਾ ਦਰੁਸਤ ਹੈ ? | | | | | | | | | | | | | (a) | ਕ੍ਰਮ ਪਰਿਵਰਤਨ ਇੱਕ | τ−ਤੋਂ−ਇੱਕ <mark>ਫ</mark> ਲ | ਨਹੈ (b) | ਤਰਤੀਬਵਾਰ ਸ | ਮਹ S₂ ਚੱਕਰ | ਰੀ ਹੈ | | | | | | | | | A₅ ਵਿਚ 120 ਤੱਤ ਹ | | | _ | | ਰ ਵੰਡ ਗ਼ੈਰ-Abeliar | ı ਹੈ | | | | | | 124 | Thor | at af intanan wit | h amamatian (| | ! 1 1 | 1 | A. 1 | | | | | | | 124. | | et of integers with dentity of this gro | | dennec | $\mathbf{a} + \mathbf{b} = \mathbf{a}$ | 1 + 0 + 1 18 | s given to be a gro | oup. | | | | | | | (a) | None of these | | | | | | | | | | | ` | | a * b | = a + b + 1 ਦੁਆ | ਰਾ ਨਿਰਧਾਰਤ ਹ | त्रीडे intege | ars ਦਾ ਸੈੱਟ ਜਿੰਨ | ਨਾਂ ਦੀ ਕਿਰਿਆ | ਆ '*' ਹੈ, ਇੱਕ ਸਮੂ | ਹ ਹੈ | | | | | | | ਇਸ ਸ | ਮੂਹ ਦੀ ਪਰਿਚਾਣ ਹੈ | • | | | | _ | | | | | | | | (a) | 0 | (b) 1 | (c) | -1 | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨ | ਹੀ ਂ | | | | | | 125 | A Sv1 | ow 3-subgroup of | fa group of a | order 12 ha | se order | | • | | | | | | | 140. | | | | | | (d) | 3 | | | | | | | | (ਘ)
ਇੱਕ ਸ | 4
ਮੂਹ ਜਿਸਦਾ ਕ੍ਮ 12 | ਹੈ ਦੇ ਇੱਕ Svi | (c)
low 3 -8): | मध्य सी उतरी | (u <i>)</i>
ਇਸ ਹੋਵੇਗੀ ? | • | | | | | | | | | हुए गातट चून 12
4 | | | 12 | | 3 | | | | | | | | (a) | 4 | (b) 2 | (c) | 12 | (d) | 3 | | | | | | | 126. | Which | n one of the follow | wing is false | ? | | | | | | | | | | | | Any two groups of | | _ | | | | | | | | | | | (b) | Any two finite gr | oups with the | e same nu | nber of eleme | ents are iso | morphic | | | | | | | | | Every isomorphis | | - | | | | | | | | | | | | An additive group | | norphic to | a multiplicati | ve group | | | | | | | | | | ਖਿਆਂ ਵਿਚੋਂ ਕਿਹੜਾ ਹ | ···· | | | | | | | | | | | | (a) | ਤਰਤੀਬ 3 ਦੇ ਕੋਈ ਵੰ | ੀ 2 ਜੁੱਟ isom | orphism ਹ | ਨ | | | | | | | | | | (b) ਸਮਾਨ ਗਿਣਤੀ ਤੱਤਾ ਵਾਲੇ ਕੋਈ ਵੀ ਦੋ ਸੀਮਤ ਸਮੂਹ isomorphism ਹਨ | | | | | | | | | | | | | | (c) | ਹਰ isomo rp hism, | homomorph | ism ਹੈ | | | | • | | | | | | | | ਇੱਕ ਯੋਜਕ ਸਮੂਹ ਇ | | | omorphic ਹੋ ਸ | ਜਕਦਾ ਹੈ | | | | | | | | D | • | - | * | 25 | | | Paper-II (Ma | iths) | | | | | | | | | | | | | | | | | | | 127. | In the | e ring of integers, | every | ideal is | | | | | | | |------|---|--|---------|---------------------|----------------|----------------------|------------------|-----------------------|--|--| | | (a) | Prime | (b) | Maximal | (c) | Principal | (d) | None of these | | | | | ਇੱਕ : | Integers ਦੇ ਘੇਰੇ ਵਿ | ਰ ਹਰ ਮ | ਆਦਰਸ਼ ਹੈ : | | | | | | | | | (a) | ਉੱਤਮ | (b) | ਅਧਿਕਤਮ | (c) | ਮੁਖ | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨਹੀਂ | | | | | | | | | | | • | | | | | 128. | Whi | ch one of the follo | _ | | | | | | | | | | (a) | Every finite inte | | | | | • | • | | | | | (b) | The characterist | | - | | | ٠ | • | | | | | (c) | A principal idea | | | | | | | | | | | (d) | Every unique fa | | | n is a l | Euclidean domai | ın. | | | | | | ਹੇਠ ਲਿਖਿਆਂ ਵਿਚੋਂ ਕਿਹੜਾ ਸਹੀ ਹੈ ।
(a) ਹਰ ਸੀਮਤ Integral ਮੁੱਲ ਵਿੱਕ ਖੇਤਰ ਹੈ | | | | | | | | | | | | (a) | _ | | | | | | | | | | | (b) | ਇੱਕ ਘੇਰੇ ਦਾ ਲੱਛਣ | | | | | | | | | | | (c) | ਇੱਕ ਪ੍ਰਮੁੱਖ ਆਦਰਸ਼ | | | _ | | | | | | | | (d) | ਹਰ ਵਿਲੱਖਣ ਵੰਡ ਮੁ | ਲ ਇੱਕ | T Euclidean | ਮੁੱਲ ਹੈ | 1 | · | | | | | | | | | | | | | | | | | 129. | | ch one of the follo | - | | . • | .c. e e.13 :- | ah alia | _ | | | | | (a) | The Galois grou | | | | | abena | l i. | | | | | (b) | x^2 -2 is irreducib
π is algebraic or | | | | | | | | | | | (c)
(d) | π is transcender | | | | | | | | | | | ` ' | ਾ ਲਾ ਜ਼ਿਜ਼ਤਦਰਜ਼ਰਹ
ਲਿਖਿਆਂ ਵਿਚੋਂ ਕਿਹੜਾ | | | | 1101110010 | | | | | | | (a) | ਇੱਕ ਸੀਮਤ ਖੇਤਰ | | | alois F | ਮਹ ਇੱਕ Abelia | າ ປີ | | | | | | (b) | ਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ | | | | | _ | | | | | | (c) | ਅਸਲ ਸੰਖਿਆਵਾਂ ਦੇ | | | | | | | | | | | , , | ਅਸਲ ਸੰਖਿਆਵਾਂ ਦੇ | | • | | _ | | • | | | | | (d) | AND UITANE, C | 450 | JED IL GION | . V OCM | io d | | • | | | | 130 | The | set Q of rational | numbe | ere with nen | al tone | ology is | | | | | | 150 | (a) | Compact | IIIIIII | ns with t st | (b) | Complete | | | | | | | (c) | Connected | | | (d) | Totally discon | nected | | | | | | ` ' | topology ਨਾਲ ਪਰਿ | ਰਮੇਯ ਸੰ | ਖਿਆਵਾਂ ਦਾ (| | | | | | | | | (a) | ਸੰਖੇਪ
ਸੰਖੇਪ | | | (b) | ੁ
ਪੂਰਨ | | • | | | | | (c) | ਸੰਬੰਧਿਤ | | | (d) | ੂ
ਪੂਰਨ ਰੂਪ ਵਿੱਚ ਮ | ਅਸੰ ਬੰ ਧਤ | | | | | 131. | Every | T ₃ - | space | is | |------|-------|------------------|-------|----| | | _, , | 4.3 | Space | | regular (a) (b) normal completely regular (d) completely normal ਹਰ T₃ – ਵਿਸਥਾਰ ਹੈ ਨਿਰੰਤਰ (a) - (b) ਅਮ - ਪੂਰਨ ਰੂਪ ਵਿੱਚ ਨਿਰੰਤਰ (c) - ਪੂਰਨ ਰੂਪ ਵਿੱਚ ਆਮ (d) 132. The order and degree of the differential equation $$\frac{d^2y}{dx^2} + \sqrt{x + \left(\frac{dy}{dx}\right)^3} = 0$$ is - (b) (3, 2) - (c) (2,3) - (d) (1, 3) ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ $\frac{d^2y}{dx^2} + \sqrt{x + \left(\frac{dy}{dx}\right)^3} = 0$ ਦਾ ਕ੍ਰਮ ਅਤੇ ਡਿਗਰੀ ਹੈ: - (a) (2, 2) - (b) (3, 2) (c) (2, 3) - (d) (1, 3) 133. The integrating factor of the differential equation $$(1 + x^2) \frac{dy}{dx} + y = \tan^{-1} x$$ is - (b) $e^{\tan^{-1}x}$ (c) $e^{-\tan x}$ - tan x ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ $(1+x^2)\frac{dy}{dx}+y=\tan^{-1}x$ ਨੂੰ ਜੋੜਨ ਵਾਲਾ ਤੱਤ ਹੈ - (a) e^{tan x} - (b) $e^{\tan^{-1}x}$ (c) $e^{-\tan x}$ - (d) tan x 134. P.I. of the differential equation $$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = e^{-x}$$ is - (a) e^{-x} - (b) $-e^{-x}$ (c) $3e^{-x}$ - (d) $\frac{1}{3}e^{-x}$ ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = e^{-x}$ ਦਾ P.I. ਹੈ - (a) e^{-x} - (b) $-e^{-x}$ (c) $3e^{-x}$ - (d) $\frac{1}{3}e^{-x}$ ### 135. The differential equation whose auxiliary equation has the roots 0, -1, -1 is (a) $\frac{d^3y}{dx^3} + \frac{dy}{dx} = 0$ - (b) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = 0$ - (c) $\frac{d^3y}{dx^3} + 2 \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ - (d) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ ਉਹ ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ ਜਿਸਦੀ ਦੇ ਸਮੀਕਰਨ ਦੇ 0, -1, -1 ਹਨ, (a) $\frac{d^3y}{dx^3} + \frac{dy}{dx} = 0$ (b) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = 0$ 27 - (c) $\frac{d^3y}{dx^3} + 2 \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ - (d) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ 136. The complete solution of the partial differential equation $\sqrt{p} + \sqrt{q} = 1$ is (a) $$z = ax + y$$ (b) $$z = ay + b$$ (c) $$z = ax + (1 - \sqrt{a})^2 y + c$$ (d) $z = x + y$ $$(d) \quad z = x + y$$ ਅੰਸ਼ਕ ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ $\sqrt{p}+\sqrt{q}=1$ ਦਾ ਪੂਰਨ ਹੱਲ ਹੈ : (a) $$z = ax + y$$ (b) $$z = ay + b$$ (c) $$z = ax + (1 - \sqrt{a})^2 y + c$$ $$(d) \quad z = x + y$$ 137. The partial differential equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ represents - One-dimensional heat flow equation (b) Wave equation (a) - Two-dimensional heat flow equation (d) Laplace equation (c) ਅੰਸ਼ਕ ਭਿੰਨਾਤਮਕ ਸਮੀਕਰਨ $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ ਦੀ ਪ੍ਰਸਤੁਤ ਕਰਦੀ ਹੈ : - ਇੱਕ ਆਯਾਮੀ ਤਾਪ ਸੰਚਾਰੀ ਸੰਬੰਧ - (b) ਤਰੰਗ ਸਮੀਕ**ਰ**ਨ - (c) ਦੋ-ਆਯਾਮੀ ਤਾਪ ਸੰਚਾਰੀ ਸੰਬੰਧ - (d) Laplace ਸਮੀਕਰਨ 138. The order of convergence of Newton-Raphson method is (a) - (c) 2 - (d) 3 Newton-Raphson ਮਾਡਲ ਦੇ ਬਦਲਾਵ ਤਰਤੀਬ ਹੈ: (a) 0 - (b) - 2 (c) - (d) 3 139. $\Delta^2 e^x$ is equal to - (a) $(e-1)e^x$ - (b) $(e-1)^2 e^x$ (c) $(e-1)e^{-x}$ (d) $(e-1)^2 e^{-x}$ $\Delta^2 e^{x} ਬਰਾਬਰ ਹੈ$ - (a) $(e-1)e^x$ (b) $(e-1)^2e^x$ (c) $(e-1)e^{-x}$ (d) $(e-1)^2e^{-x}$ 140. A necessary condition for $l = \int_{x_1}^{x_2} (x, y, y') dx$ to be an extremum is - (a) $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ - (b) $\frac{\partial f}{\partial x} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ - (c) $\frac{\partial f}{\partial x} \frac{d}{dx} \left(\frac{\partial f}{\partial x'} \right) = 0$ - $(d) \quad \frac{\partial f}{\partial y} \frac{d}{dy} \left(\frac{\partial f}{\partial y'} \right) = 0$ $I = \int_{x_1}^{x_2} (x, y, y') dx$ ਦੇ ਅਧਿਕਤਮ ਹੋਣ ਲਈ ਜ਼ਰੂਰੀ ਸ਼ਰਤ ਹੈ - (a) $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ - (b) $\frac{\partial f}{\partial x} \frac{d}{dx} \left(\frac{\partial f}{\partial x^i} \right) = 0$ - (c) $\frac{\partial f}{\partial x} \frac{d}{dy} \left(\frac{\partial f}{\partial y'} \right) = 0$ - (d) $\frac{\partial f}{\partial y} \frac{d}{dy} \left(\frac{\partial f}{\partial y'} \right) = 0$ | | (a) | circles | | traight lines | (c) | cycloids | (d) | catenary | | |------|---|--|--------------------|-------------------------------------|-------------------------------|--|-------------------|---|--| | | ਇੱਕ ਪਲੇਨ ਉਪਰ Geodesics ਹਨ : | | | | | | | | | | | (a) | ਗੋਲੇ | (b) f | ਸੱਧੀਆਂ ਰੇਖਾਵਾਂ | (c) | ਚੱਕਰਾਕਾਰ | (d) | ਸੰਗਲੀ ਕਾਰ ਵਕਰ | | | 142. | | integral equation | y(x) | = F(x) + | λ ∫ _a ^b | K(x,t) y(t) dt | is calle | ed Volterra integral | | | | (a) | a and b are variab | oles | | (b) | a and b are cons | tants | | | | | (c) a is a constant while b is a variable | | | (d) | either a or b is zero | | | | | | | Integral ਸਮੀਕਰਨ $y(x)=F(x)+\lambda\int_a^bK(x,t)y(t)dt$ ਨੂੰ Volterra integral ਸਮੀਕਰਨ ਕਿਹ
ਜਾਂਦਾ ਹੈ ਜੇਕਰ | | | | | | | | | | | (a) | a ਅਤੇ b ਅਸਥਿਰ ਹ | ਨ | | (b) | a ਅਤੇ b ਸਥਿਰ ਹਨ | 5 | | | | | (c) | a मिंव ਹੈ ਜਦਕਿ b | ਅਸਥਿ | ਰ ਹੈ | (d) | a ਜਾਂ b ਸਿਫਰ ਹੈ | | | | | 143. | Short | test curve joining t | wo fi | red points is | 2 | | *. | | | | 1101 | (a) | a cycloid | | pomio i | (b) | straight line | | | | | | (c) | catenary | | | (d) | cardiode | | | | | | ਦੇ ਸਥਿਰ ਬਿੰਦੂਆਂ ਨੂੰ ਜੋੜਨ ਵਾਲਾ ਛੋਟੇ ਤੋਂ ਛੋਟਾ ਵੱਕਰ ਹੈ : | | | | | | | | | | | (a) | ਇੱਕ ਚੱਕਰਾਕਾਰ | | | (b) | ਸਿੱਧੀ ਰੇਖਾ | | | | | | (c) | ਸੰਗਲਾਕਾਰ | | } - | (d) | cardiode | | | | | 144. | If a j
starti | ng from rest from | A, th | e form of pa | ath in | order that the tir | ne fron | and B under gravity,
n A to B is minimum | | | |
(a) | straight line | | | | | | circle | | | | ਜੇਕਰ
ਹੈ, A | ਇੱਕ ਕਣ ਗੁਰੂਤਾ ਆਰ
ਤੋਂ ਸ਼ਰੂ ਹੋਣ ਕੇ, ਰਸ | ਕਰਸ਼ਨ ਹ
ਤੇ ਦੀ ਸ | ਨਾਲ ਦੋ ਸਥਿਰ
ਜ਼ਕਲ ਤਾਂ ਜੋ <i>ਹ</i> | ਬਿੰਦੂਅ
A ਤੋਂ E | ਾਂ A ਅਤੇੌਂ B ਨੂੰ ਜੋੜ੍ਹ
3 ਤੱਕ ਸਮਾਂ ਘੱਟ ਤੋਂ ≀ | ਦਾ ਇੱਕ
ਘੱਟ ਹੈ, | ਨਸਮਤਲ ਵੱਕਰ 'ਤੇ ਚਲਦਾ
ਹੋਵੇਗੀ ? | | | | (a) | ਸਿੱਧੀ ਰੇਖਾ | (b) | ਚੱਕਰ | (c) | cardioide | (d) | ਘੇਰਾ | | | 145. | The | number of degrees | of fre | edom of a r | igid b | ody moving free | ly in sp | pace is | | | | (a) | 2 | (b) | _ | (c) | 4 | (d) | 6 | | | | | ੂ
ਵਿੱਚ ਸੁਤੰਤਰ ਘੁੰਮਦੀ | • • | | | ੀ ਦੀ ਸੰਖਿਆ ਹੈ : | | | | | | (a) | 2 | (b) | | (c) | | (d) | 6 | | | | | | | | | | | | | 141. Geodesics on a plane are | 140. | with one of its point fixed is | | | | | | | | ,ouy | |--------|--|--|-----------|---------------------|---------------|-----------------------|----------------|--------------------|-------| | | (a) | 1 | (b) | 4 | (c) | 3 | (d) | 6 | | | | ਇੱਕ : | ਸਥਿਰ ਬਿੰਦੂ ਨਾਲ ਚਲ | ਦੇ ਹੋਏ | ਇੱਕ ਸਖ਼ਤ ਤੋਂ | ਤ ਦੀ ਚ | ਸਾਲ ਨੂੰ ਦੱਸਣ ਵਾਲੇ ∞ | -ordir | nates ਦੀ ਗਿਣਤੀ ਹੈ | | | | (a) | 1 | (b) | 4 | (c) | 3 | (d) | 6 | | | 147. | The | conjunction of two | o state | ements p and | d <i>q</i> is | true if | ٠ | · | | | | (a) | p is true | (b) | q is true | (c) | both (a) and (b) | (d) | neither (a) nor (b |) | | | ਦੋ ਕਥ | p ਅਤੇ q ਦਾ ਜੋੜ | ਦਰੁਸ਼ਤ | ਤ ਹੈ ਜੇਕਰ | | | | | | | | (a) | p ਸਹੀ ਹੈ | (b) | q ਸਹੀ ਹੈ | (c) | (a) ਅਤੇ (b) ਦੋਵੇਂ | (d) | ਨਾ (a) ਅਤੇ ਨਾ (b) | | | | | | | | | | | | ٠ | | 148. | 148. If the statements p and q are defined as p : the integer n is odd and q : the integer q odd then $p \Rightarrow q$ is | | | | | | | | ı² is | | | (a) | false | | | (b) | true | • | | | | | (c) | sometime true an | d som | etime false | (d) | none of these | | | | | | | ਕਥਨਾਂ p ਅਤੇ q ਨੂੰ ਪਰਿਭਾਸ਼ਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, p : integer n ਟਾਂਕ ਹੈ ਅਤੇ q : integer n^2 ਟ
ਰ $p\Rightarrow q$ ਹੈ | | | | | | | | | | (a) | ਗਲਤ | | | (b) | ਸਹੀ | | | | | | (c) | ਕਦੇ ਗਲਤ ਅਤੇ ਕਦੇ | ਸਹੀ | | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨ | ਹੀਂ | | | | 149. | Give | n that $(n \vee a) \wedge (a)$ | ~ n∨ | $\sim a$) is false | e then | the truth values o | of nar | nd a are | | | 2 1,71 | (a) | both false | ν, | 4) 10 Iuis | (b) | both true | n p aı | id q arc | | | | ` . | either both true o | or botl | n false | ` ' | none of these | | | | | | - | $(q) \wedge (\sim p \vee \sim q)$ | | | | | | | | | | (a) | ਦੋਵੇਂ ਗਲਤ | | • | (b) | -
ਦੋਵੇਂ ਸਹੀ | ٠ | | | | | (c) | ਜਾਂ ਦੋਵੇਂ ਗਲਤ ਜਾਂ ਦੋ | ਵੇਂ ਸਹੰ | Ì | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨ | ਨਹੀ | | | | 150 | The | proposition define | d by | n A (o. m.) (| •) i.a | | | | | | 150. | (a) | a tautology | a by [| υ Λ (~ p ν q | | a contradiction | • | | | | | (c) | logically equival | ent to | n A a | (b)
(d) | none of these | | | | | | ` ' | rogically equival
(~ p ∨ q) ਦੁਆਰਾ ਪ | _ | • | • • | none of mese | | | • | | | | ਇੱਕ tautology | 11.60.11 | ग्नेपञ् <i>स</i> () | | 67 - 6 - 7 | | | | | | (a) | _ | | - | (b) | ਇੱਕ ਵਿਰੋਧਾਭਾਸ | n | | | | | (c) | <i>p</i> ∧ <i>q</i> ਦੇ ਤਰਕਸੰਗਤ | ও ধ্বলম্ব | 10 | (d) | ਇਹਨਾਂ ਵਿੱਚੋਂ ਕੋਈ ਨ | ज्या | | | | | | | | | | | | | | #### **SPACE FOR ROUGH WORK** ## SPACE FOR ROUGH WORK